PlasticsEurope. Plastics - the Facts 2019. Vol. 8, www.plasticseurope.org. 2019. p. IV.
Frias JPGL, Nash R. Microplastics: finding a consensus on the definition. Mar Pollut Bull. 2019;138(September 2018):145–7. https://doi.org/10.1016/j.marpolbul.2018.11.022.
Article
CAS
Google Scholar
Ekvall MT, Lundqvist M, Kelpsiene E, Šileikis E, Gunnarsson SB, Cedervall T. Nanoplastics formed during the mechanical breakdown of daily-use polystyrene products. Nanoscale Adv. 2019;1(3):1055–61. https://doi.org/10.1039/C8NA00210J.
Article
CAS
Google Scholar
Hartmann NB, Hüffer T, Thompson RC, Hassellöv M, Verschoor A, Daugaard AE, et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ Sci Technol. 2019;53(3):1039–47. https://doi.org/10.1021/acs.est.8b05297.
Article
CAS
Google Scholar
Liebezeit G, Liebezeit E. Non-pollen particulates in honey and sugar. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2013;30(12):2136–40. https://doi.org/10.1080/19440049.2013.843025.
Article
CAS
Google Scholar
Liebezeit G, Liebezeit E. Synthetic particles as contaminants in German beers. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess. 2014;31(9):1574–8. https://doi.org/10.1080/19440049.2014.945099.
Article
CAS
Google Scholar
Yang D, Shi H, Li L, Li J, Jabeen K, Kolandhasamy P. Microplastic pollution in table salts from China. Environ Sci Technol. 2015;49(22):13622–7. https://doi.org/10.1021/acs.est.5b03163.
Article
CAS
Google Scholar
Li J, Yang D, Li L, Jabeen K, Shi H. Microplastics in commercial bivalves from China. Environ Pollut. 2015;207:190–5. https://doi.org/10.1016/j.envpol.2015.09.018.
Article
CAS
Google Scholar
Van Cauwenberghe L, Janssen CR. Microplastics in bivalves cultured for human consumption. Environ Pollut. 2014;193:65–70. https://doi.org/10.1016/j.envpol.2014.06.010.
Article
CAS
Google Scholar
Mathalon A, Hill P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor. Nova Scotia Mar Pollut Bull. 2014;81(1):69–79. https://doi.org/10.1016/j.marpolbul.2014.02.018.
Article
CAS
Google Scholar
Woodall LC, Sanchez-Vidal A, Canals M, Paterson GLJ, Coppock R, Sleight V, et al. The deep sea is a major sink for microplastic debris. R Soc Open Sci. 2014;1(4):140317.
Article
Google Scholar
Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, et al. Plastic pollution in the World’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One. 2014;9(12):1–15. https://doi.org/10.1371/journal.pone.0111913.
Article
CAS
Google Scholar
Cai L, Wang J, Peng J, Tan Z, Zhan Z, Tan X, et al. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. Environ Sci Pollut Res. 2017;24(32):24928–35. https://doi.org/10.1007/s11356-017-0116-x.
Article
Google Scholar
Koelmans B, Pahl S, Backhaus T, Bessa F, van Calster G, Contzen N, et al. A scientific perspective on microplastics in nature and society. Evidence Rev Rep. 2019;2019:176. https://doi.org/10.26356/microplastics.
Rahman A, Sarkar A, Yadav OP, Achari G, Slobodnik J. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: a scoping review. Sci Total Environ [internet]. 2021;757:143872. Available from. https://doi.org/10.1016/j.scitotenv.2020.143872.
Article
CAS
Google Scholar
Wright SL, Kelly FJ. Plastic and human health: a Micro issue? Environ Sci Technol. 2017;51(12):6634–47. https://doi.org/10.1021/acs.est.7b00423.
Article
CAS
Google Scholar
Vethaak AD, Legler J. Microplastics and human health. Science (80- ). 2021;371(6530):672–4.
Article
CAS
Google Scholar
Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, et al. Plasticenta: first evidence of microplastics in human placenta. Environ Int. 2021;146:106274. https://doi.org/10.1016/j.envint.2020.106274.
Article
CAS
Google Scholar
Schwabl P, Koppel S, Konigshofer P, Bucsics T, Trauner M, Reiberger T, et al. Detection of various microplastics in human stool: a prospective case series. Ann Intern Med. 2019;171(7):453–7. https://doi.org/10.7326/M19-0618.
Article
Google Scholar
Stock V, Böhmert L, Lisicki E, Block R, Cara-Carmona J, Pack LK, et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol. 2019;93(7):1817–33. https://doi.org/10.1007/s00204-019-02478-7.
Article
CAS
Google Scholar
Rubio L, Marcos R, Hernández A. Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models. J Toxicol Environ Heal - Part B Crit Rev. 2020;23(2):51–68. https://doi.org/10.1080/10937404.2019.1700598.
Article
CAS
Google Scholar
Kooter IM, Gröllers-Mulderij M, Duistermaat E, Kuper F, Schoen ED. Factors of concern in a human 3D cellular airway model exposed to aerosols of nanoparticles. Toxicol Vitr. 2017;44(December 2016):339–48. https://doi.org/10.1016/j.tiv.2017.07.006.
Article
CAS
Google Scholar
Kooter I, Ilves M, Gröllers-Mulderij M, Duistermaat E, Tromp PC, Kuper F, et al. Molecular signature of asthma-enhanced sensitivity to CuO nanoparticle aerosols from 3D cell model. ACS Nano. 2019;13(6):6932–46. https://doi.org/10.1021/acsnano.9b01823.
Article
CAS
Google Scholar
Westerhout J, Van De Steeg E, Grossouw D, Zeijdner EE, Krul CAM, Verwei M, et al. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur J Pharm Sci. 2014;63:167–77. https://doi.org/10.1016/j.ejps.2014.07.003.
Article
CAS
Google Scholar
Stevens LJ, van Lipzig MMH, Erpelinck SLA, Pronk A, van Gorp J, Wortelboer HM, et al. A higher throughput and physiologically relevant two-compartmental human ex vivo intestinal tissue system for studying gastrointestinal processes. Eur J Pharm Sci. 2019;137(February):104989. https://doi.org/10.1016/j.ejps.2019.104989.
Article
CAS
Google Scholar
Eslami Amirabadi H, Donkers J, Wierenga E, Ingenhut B, Pieters L, Stevens L, et al. Intestinal explant barrier Chip: long-term intestinal absorption screening in a novel microphysiological system using tissue explants. Lab Chip. 2021. https://doi.org/10.1039/d1lc00669j.
Li M, Wilkinson D, Patchigolla K. Comparison of particle size distributions measured using different techniques. Part Sci Technol. 2005;23(3):265–84. https://doi.org/10.1080/02726350590955912.
Article
CAS
Google Scholar
Allen M, Millett P, Dawes E, Rushton N. Lactate dehydrogenase activity as a rapid and sensitive test for the quantification of cell numbers in vitro. Clin Mater. 1994;16(4):189–94. https://doi.org/10.1016/0267-6605(94)90116-3.
Article
CAS
Google Scholar
Dawson A, Dyer C, Macfie J, Davies J, Karsai L, Greenman J, et al. A microfluidic chip based model for the study of full thickness human intestinal tissue using dual flow. Biomicrofluidics. 2016;10(6).
Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20(2):107–26. https://doi.org/10.1177/2211068214561025.
Article
CAS
Google Scholar
FDA. Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. In: Handbook of Pharmaceutical Manufacturing Formulations. Third ed. Rockville, MD; 2020. p. 27–35.
Vaessen SFC, van Lipzig MMH, Pieters RHH, Krul CAM, Wortelboer HM, van de Steeg E. Regional expression levels of drug transporters and metabolizing enzymes along the pig and human intestinal tract and comparison with Caco-2 cells. Drug Metab Dispos. 2017;45(4):353–60. https://doi.org/10.1124/dmd.116.072231.
Article
CAS
Google Scholar
Patterson JK, Lei XG, Miller DD. The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Exp Biol Med. 2008;233(6):651–64. https://doi.org/10.3181/0709-MR-262.
Article
CAS
Google Scholar
Westerhout J, Wortelboer H, Verhoeckx K. Ussing chamber. In: The impact of food bioactives on health. Cham: Springer International Publishing; 2015. p. 263–73.
Google Scholar
Herrmann JR, Turner JR. Beyond Ussing’s chambers: contemporary thoughts on integration of transepithelial transport. Am J Physiol Physiol. 2016;310(6):C423–31. https://doi.org/10.1152/ajpcell.00348.2015.
Article
Google Scholar
Stevens LJ, van Lipzig MMH, Erpelinck SLA, Pronk A, van Gorp J, Wortelboer HM, et al. A higher throughput and physiologically relevant two-compartmental human ex vivo intestinal tissue system for studying gastrointestinal processes. Eur J Pharm Sci. 2019;137(July):104989. https://doi.org/10.1016/j.ejps.2019.104989.
Article
CAS
Google Scholar
Westerhout J, Van De Steeg E, Grossouw D, Zeijdner EE, Krul CAM, Verwei M, et al. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur J Pharm Sci. 2014;63:167–77. https://doi.org/10.1016/j.ejps.2014.07.003.
Article
CAS
Google Scholar
Donkers JM, Amirabadi HE, van de Steeg E. Intestine-on-a-chip: next level in vitro research model of the human intestine. Curr Opin Toxicol. 2020;135907.
Baydoun M, Treizeibré A, Follet J, Vanneste SB, Creusy C, Dercourt L, et al. An interphase microfluidic culture system for the study of ex vivo intestinal tissue. Micromachines. 2020;11(2).
Costa MO, Nosach R, Harding JCS. Development of a 3D printed device to support long term intestinal culture as an alternative to hyperoxic chamber methods. 3D Print Med. 2017;3(1):0–4.
Article
CAS
Google Scholar
Hirt N, Body-Malapel M. Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature. Part Fibre Toxicol. 2020;17(1):1–22. https://doi.org/10.1186/s12989-020-00387-7.
Article
Google Scholar
EFSA. Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016;14(6).
Cox KD, Covernton GA, Davies HL, Dower JF, Juanes F, Dudas SE. Human consumption of microplastics. Environ Sci Technol. 2019;53(12):7068–74. https://doi.org/10.1021/acs.est.9b01517.
Article
CAS
Google Scholar
Rochman CM, Tahir A, Williams SL, Baxa DV, Lam R, Miller JT, et al. Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci Rep. 2015;5(August):1–10. https://doi.org/10.1038/srep14340.
Article
CAS
Google Scholar
Bouwmeester H, Hollman PCH, Peters RJB. Potential health impact of environmentally released Micro- and Nanoplastics in the human food production chain: experiences from Bouwmeester, H., Hollman, P. C. H., & Peters, R. J. B. (2015). Potential health impact of environmentally released Micro- and. Environ Sci Technol. 2015;49(15):8932–47. https://doi.org/10.1021/acs.est.5b01090.
Article
CAS
Google Scholar
Dris R, Gasperi J, Saad M, Mirande C, Tassin B. Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Mar Pollut Bull. 2016;104(1–2):290–3. https://doi.org/10.1016/j.marpolbul.2016.01.006.
Article
CAS
Google Scholar
Kasirajan S, Ngouajio M. Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev. 2012;32(2):501–29. https://doi.org/10.1007/s13593-011-0068-3.
Article
CAS
Google Scholar
Burkhart J, Jones W, Porter DW, Washko RM, Eschenbacher WL, Castellan RM. Hazardous occupational exposure and lung disease among nylon flock workers. Am J Ind Med. 1999;36(SUPPL. 1):145–6. https://doi.org/10.1002/(SICI)1097-0274(199909)36:1+<145::AID-AJIM51>3.0.CO;2-F.
Article
Google Scholar
Panko JM, Kreider ML, McAtee BL, Marwood C. Chronic toxicity of tire and road wear particles to water- and sediment-dwelling organisms. Ecotoxicology. 2013;22(1):13–21. https://doi.org/10.1007/s10646-012-0998-9.
Article
CAS
Google Scholar
Xu M, Halimu G, Zhang Q, Song Y, Fu X, Li Y, et al. Internalization and toxicity: a preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci Total Environ. 2019;694:133794. https://doi.org/10.1016/j.scitotenv.2019.133794.
Article
CAS
Google Scholar
Varela JA, Bexiga MG, Åberg C, Simpson JC, Dawson KA. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells. J Nanobiotechnol. 2012;10(1):39. https://doi.org/10.1186/1477-3155-10-39.
Article
CAS
Google Scholar
Powell JJ, Faria N, Thomas-McKay E, Pele LC. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun. 2010;34(3):J226–33. https://doi.org/10.1016/j.jaut.2009.11.006.
Article
CAS
Google Scholar
Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol. 2001;175(3):191–9. https://doi.org/10.1006/taap.2001.9240.
Article
CAS
Google Scholar
Deng Y, Zhang Y, Lemos B, Ren H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep. 2017;7(April):1–10. https://doi.org/10.1038/srep46687.
Article
Google Scholar
Hwang J, Choi D, Han S, Jung SY, Choi J, Hong J. Potential toxicity of polystyrene microplastic particles. Sci Rep. 2020;10(1):1–12.
Article
Google Scholar
Choi D, Bang J, Kim T, Oh Y, Hwang Y, Hong J. in vitro Chemical and physical toxicity of polystyrene microplastics in human-derived cells. 2020. 1–41 p.
Lehner R, Wohlleben W, Septiadi D, Landsiedel R, Petri-Fink A, Rothen-Rutishauser B. A novel 3D intestine barrier model to study the immune response upon exposure to microplastics. Arch Toxicol. 2020;94(7):2463–79. https://doi.org/10.1007/s00204-020-02750-1.
Article
CAS
Google Scholar
Magrì D, Sánchez-Moreno P, Caputo G, Gatto F, Veronesi M, Bardi G, et al. Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment. ACS Nano. 2018;12(8):7690–700. https://doi.org/10.1021/acsnano.8b01331.
Article
CAS
Google Scholar
Winton HL, Wan H, Cannell MB, Gruenert DC, Thompson PJ, Garrod DR, et al. Cell lines of pulmonary and non-pulmonary origin as tools to study the effects of house dust mite proteinases on the regulation of epithelial permeability. Clin Exp Allergy. 1998;28(10):1273–85. https://doi.org/10.1046/j.1365-2222.1998.00354.x.
Article
CAS
Google Scholar
Cooney DJ, Hickey AJ. Cellular response to the deposition of diesel exhaust particle aerosols onto human lung cells grown at the air-liquid interface by inertial impaction. Toxicol Vitr. 2011;25(8):1953–65. https://doi.org/10.1016/j.tiv.2011.06.019.
Article
CAS
Google Scholar
Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, et al. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates fürom the lung of rats to the blood and secondary target organs. Inhal Toxicol. 2009;21(SUPPL. 1):55–60. https://doi.org/10.1080/08958370902942517.
Article
CAS
Google Scholar
Kreyling W, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. Journal of Toxicology and Environmental Health. Part A, 2002;65(20):1513–30. https://doi.org/10.1080/00984100290071649.
van Dijk F, Song S, van Eck GW, Wu X, Bos IST, Boom DHA, et al. Inhalable textile microplastic fibers impair airway epithelial growth. bioRxiv. 2021;(January):2021.01.25.428144.
Wik A. Toxic components leaching from tire rubber. Bull Environ Contam Toxicol. 2007;79(1):114–9. https://doi.org/10.1007/s00128-007-9145-3.
Article
CAS
Google Scholar
Capolupo M, Sørensen L, Jayasena KDR, Booth AM, Fabbri E. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Res [internet]. 2020;169:115270. Available from. https://doi.org/10.1016/j.watres.2019.115270.
Article
CAS
Google Scholar
Martínez-Gómez C, León VM, Calles S, Gomáriz-Olcina M, Vethaak AD. The adverse effects of virgin microplastics on the fertilization and larval development of sea urchins. Mar Environ Res. 2017;130:69–76. https://doi.org/10.1016/j.marenvres.2017.06.016.
Article
CAS
Google Scholar
Björnsdotter M. Leaching of residual monomers, oligomers and additives from polyethylene, polypropylene, polyvinyl chloride, high-density polyethylene and polystyrene virgin plastics [internet]: Örebro University, School of Science and Technology; 2015. Available from: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A855478&dswid=4786. Accessed 7 Dec 2021.
Polysciences Inc. Safety Data Sheet Polystyrene spheres [Internet]. 2017. p. 3. Available from: https://www.polysciences.com/media/amasty/amfile/attach/paryT5xrwqWszJcmdaf3wP6nhcEc980C.pdf. Accessed 7 Dec 2021
Banerjee A, Shelver WL. Micro- and nanoplastic induced cellular toxicity in mammals: a review. Sci Total Environ. 2021;755(Pt 2):142518. https://doi.org/10.1016/j.scitotenv.2020.142518.
Article
CAS
Google Scholar
Shi Q, Tang J, Wang L, Liu R, Giesy JP. Combined cytotoxicity of polystyrene nanoplastics and phthalate esters on human lung epithelial A549 cells and its mechanism. Ecotoxicol Environ Saf. 2021;213:112041. https://doi.org/10.1016/j.ecoenv.2021.112041.
Article
CAS
Google Scholar
Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T. Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ. 2020;702:134455. https://doi.org/10.1016/j.scitotenv.2019.134455.
Article
CAS
Google Scholar
Sinnecker H, Krause T, Koelling S, Lautenschläger I, Frey A. The gut wall provides an effective barrier against nanoparticle uptake. Beilstein J Nanotechnol. 2014;5(1):2092–101. https://doi.org/10.3762/bjnano.5.218.
Article
CAS
Google Scholar
Walczak AP, Hendriksen PJM, Woutersen RA, van der Zande M, Undas AK, Helsdingen R, et al. Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats. J Nanopart Res. 2015;17(5):1–13. https://doi.org/10.1007/s11051-015-3029-y.
Article
CAS
Google Scholar