SAPEA. A scientific perspective on microplastics in nature and society. Berlin; 2019. https://doi.org/10.26356/microplastics.
Akdogan Z, Guven B. Microplastics in the environment: a critical review of current understanding and identification of future research needs. Environ Pollut. 2019;254:113011 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0269749119302039.
Article
CAS
Google Scholar
Siegfried M, Koelmans AA, Besseling E, Kroeze C. Export of microplastics from land to sea. a modelling approach. Water Res. 2017;127:249–57. https://doi.org/10.1016/j.watres.2017.10.011.
Article
CAS
Google Scholar
Kole PJ, Löhr AJ, Van Belleghem FGAJ, Ragas AMJ. Wear and tear of tyres: a stealthy source of microplastics in the environment. Int J Environ Res Public Health. 2017;14(10):1265.
Article
Google Scholar
Hann S, Sherrington C, Jamieson O, Hickman M, Kershaw P, Bapasola A, et al. Investigating options for reducing releases in the aquatic environment of microplastics emitted by (but not intentionally added in) products - interim report. Report for DG Env EC. 2018.
Google Scholar
Verschoor A, de Poorter L, Dröge R, Kuenen J, de Valk E. Emission of microplastics and potential mitigation measures: abrasive cleaning agents, paints and tyre wear. Bilthoven: National Institute for Public Health and the Environment; 2016.
Baensch-Baltruschat B, Kocher B, Kochleus C, Stock F, Reifferscheid G. Tyre and road wear particles - a calculation of generation, transport and release to water and soil with special regard to German roads. Sci Total Environ. 2021;752:141939. https://doi.org/10.1016/j.scitotenv.2020.141939.
Article
CAS
Google Scholar
Wagner S, Hüffer T, Klöckner P, Wehrhahn M, Hofmann T, Reemtsma T. Tire wear particles in the aquatic environment - a review on generation, analysis, occurrence, fate and effects. Water Res. 2018;139(March):83–100. https://doi.org/10.1016/j.watres.2018.03.051.
Article
CAS
Google Scholar
Panko JM, Kreider ML, McAtee BL, Marwood C. Chronic toxicity of tire and road wear particles to water- and sediment-dwelling organisms. Ecotoxicology. 2013;22(1):13–21. https://doi.org/10.1007/s10646-012-0998-9.
Article
CAS
Google Scholar
Wik A, Dave G. Occurrence and effects of tire wear particles in the environment - a critical review and an initial risk assessment. Environ Pollut. 2009;157(1):1–11. https://doi.org/10.1016/j.envpol.2008.09.028.
Article
CAS
Google Scholar
Sommer F, Dietze V, Baum A, Sauer J, Gilge S, Maschowski C, et al. Tire abrasion as a major source of microplastics in the environment. Aerosol Air Qual Res. 2018;(1991):2014–28 Available from: http://www.aaqr.org/doi/10.4209/aaqr.2018.03.0099.
Baensch-Baltruschat B, Kocher B, Stock F, Reifferscheid G. Tyre and road wear particles (TRWP) - A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci Total Environ. Elsevier B.V. 2020;733:37823.
Article
Google Scholar
Halle LL, Palmqvist A, Kampmann K, Khan FR. Ecotoxicology of micronized tire rubber: past, present and future considerations. Sci Total Environ. Elsevier B.V. 2020;706:135694.
Article
CAS
Google Scholar
Kreider ML, Panko JM, McAtee BL, Sweet LI, Finley BL. Physical and chemical characterization of tire-related particles: comparison of particles generated using different methodologies. Sci Total Environ. 2010;408(3):652–9. https://doi.org/10.1016/j.scitotenv.2009.10.016.
Article
CAS
Google Scholar
Marwood C, McAtee B, Kreider M, Ogle RS, Finley B, Sweet L, et al. Acute aquatic toxicity of tire and road wear particles to alga, daphnid, and fish. Ecotoxicology. 2011;20(8):2079–89. https://doi.org/10.1007/s10646-011-0750-x.
Article
CAS
Google Scholar
Unice KM, Kreider ML, Panko JM. Comparison of tire and road wear particle concentrations in sediment for watersheds in France, Japan, and the United States by quantitative pyrolysis GC/MS analysis. Environ Sci Technol. 2013;47(15):8138–47. https://doi.org/10.1021/es400871j.
Article
CAS
Google Scholar
Turner A, Rice L. Toxicity of tire wear particle leachate to the marine macroalga, Ulva lactuca. Environ Pollut. 2010;158(12):3650–4. https://doi.org/10.1016/j.envpol.2010.08.001.
Article
CAS
Google Scholar
Zhang J, Hua P, Krebs P. The chemical fractionation and potential source identification of Cu, Zn and Cd on urban watershed. Water Sci Technol. 2015;72(8):1428–36. https://doi.org/10.2166/wst.2015.355.
Article
CAS
Google Scholar
Rose S, Shea JA. Chapter 6 Environmental geochemistry of trace metal pollution in urban watersheds. In: Developments in environmental science, vol. 5; 2007. p. 99–131.
Google Scholar
Aatmeeyata, Sharma M. Contribution of traffic-generated nonexhaust PAHs, elemental carbon, and organic carbon emission to air and urban runoff pollution. J Environ Eng. 2010;136(12):1447–50 Available from: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0000274. Cited 2021 Mar 2.
Article
CAS
Google Scholar
Day KE, Holtze KE, Metcalfe-Smith JL, Bishop CT, Dutka BJ. Toxicity of leachate from automobile tires to aquatic biota. Chemosphere. 1993;27(4):665–75. https://doi.org/10.1016/0045-6535(93)90100-J.
Article
CAS
Google Scholar
Stephensen E, Adolfsson-Erici M, Celander M, Hulander M, Parkkonen J, Hegelund T, et al. Biomarker responses and chemical analyses in fish indicate leakage of polycyclic aromatic hydrocarbons and other compounds from car tire rubber. Environ Toxicol Chem. 2003;22(12):2926–31. https://doi.org/10.1897/02-444.
Article
CAS
Google Scholar
Wik A, Dave G. Environmental labeling of car tires-toxicity to Daphnia magna can be used as a screening method. Chemosphere. 2005;58(5):645–51. https://doi.org/10.1016/j.chemosphere.2004.08.103.
Article
CAS
Google Scholar
Wik A, Dave G. Acute toxicity of leachates of tire wear material to Daphnia magna-variability and toxic components. Chemosphere. 2006;64(10):1777–84. https://doi.org/10.1016/j.chemosphere.2005.12.045.
Article
CAS
Google Scholar
Wik A. When the rubber meets the road - ecotoxicological hazard and risk assessment of tire wear particles. 2008. Available from: http://gupea.ub.gu.se/handle/2077/17762%5Cnhttp://gupea.ub.gu.se/bitstream/2077/17762/1/gupea_2077_17762_1.pdf%5Cnhttps://gupea.ub.gu.se/handle/2077/17762
Google Scholar
Wik A, Nilsson E, Källqvist T, Tobiesen A, Dave G. Toxicity assessment of sequential leachates of tire powder using a battery of toxicity tests and toxicity identification evaluations. Chem Int. 2009;77(7):922–7. https://doi.org/10.1016/j.chemosphere.2009.08.034.
Article
CAS
Google Scholar
Petrucci G, Gromaire MC, Shorshani MF, Chebbo G. Nonpoint source pollution of urban stormwater runoff: a methodology for source analysis. Environ Sci Pollut Res. 2014;21(17):10225–42. https://doi.org/10.1007/s11356-014-2845-4.
Article
CAS
Google Scholar
Mohammed T, Loganathan P, Kinsela A, Vigneswaran S, Kandasamy J. Enrichment, inter-relationship, and fractionation of heavy metals in road-deposited sediments of Sydney, Australia. Soil Res. 2012;50(3):229–38. https://doi.org/10.1071/SR12010.
Article
CAS
Google Scholar
Markiewicz A, Björklund K, Eriksson E, Kalmykova Y, Strömvall AM, Siopi A. Emissions of organic pollutants from traffic and roads: priority pollutants selection and substance flow analysis. Sci Total Environ. 2017;580:1162–74. https://doi.org/10.1016/j.scitotenv.2016.12.074.
Article
CAS
Google Scholar
Lygren E, Gjessing E, Berglind L. Pollution transport from a highway. Sci Total Environ. 1984;33(1–4):147–59. https://doi.org/10.1016/0048-9697(84)90389-9.
Article
CAS
Google Scholar
Huber M, Welker A, Helmreich B. Critical review of heavy metal pollution of traffic area runoff: occurrence, influencing factors, and partitioning. Sci Total Environ. 2016;541:895–919 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969715306938. Cited 2021 Mar 2.
Article
CAS
Google Scholar
Evans JJ. Rubber tire leachates in the aquatic environment. Rev Environ Contam Toxicol. 1997;151:67–115 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9216257.
CAS
Google Scholar
Degaffe FS, Turner A. Leaching of zinc from tire wear particles under simulated estuarine conditions. Chemosphere. 2011;85(5):738–43. https://doi.org/10.1016/j.chemosphere.2011.06.047.
Article
CAS
Google Scholar
Blok J. Environmental exposure of road borders to zinc. Sci Total Environ. 2005;348(1–3):173–90. https://doi.org/10.1016/j.scitotenv.2004.12.073.
Article
CAS
Google Scholar
Tian Z, Zhao H, Peter KT, Gonzalez M, Wetzel J, Wu C, et al. A ubiquitous tire rubber–derived chemical induces acute mortality in coho salmon. Science (80- ). 2021;371(6525):185–9.
Article
CAS
Google Scholar
Capolupo M, Sørensen L, Jayasena KDR, Booth AM, Fabbri E. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Res. 2020;169:115270. https://doi.org/10.1016/j.watres.2019.115270.
Article
CAS
Google Scholar
Unice KM, Weeber MP, Abramson MM, Reid RCD, van Gils JAG, Markus AA, et al. Characterizing export of land-based microplastics to the estuary - part I: application of integrated geospatial microplastic transport models to assess tire and road wear particles in the Seine watershed. Sci Total Environ. 2019;646:1639–49. https://doi.org/10.1016/j.scitotenv.2018.07.368.
Article
CAS
Google Scholar
Knight LJ, Parker-Jurd FNF, Al-Sid-Cheikh M, Thompson RC. Tyre wear particles: an abundant yet widely unreported microplastic? Environ Sci Pollut Res. 2020;27(15):18345–54. https://doi.org/10.1007/s11356-020-08187-4 Cited 2020 Dec 18.
Article
CAS
Google Scholar
Wik A, Lycken J, Dave G. Sediment quality assessment of road runoff detention systems in Sweden and the potential contribution of tire wear. Water Air Soil Pollut. 2008;194(1):301–14. https://doi.org/10.1007/s11270-008-9718-8.
Article
CAS
Google Scholar
Ziajahromi S, Drapper D, Hornbuckle A, Rintoul L, Leusch FDL. Microplastic pollution in a stormwater floating treatment wetland: detection of tyre particles in sediment. Sci Total Environ. 2020;713:136356 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969719363521. Cited 2020 May 27.
Article
CAS
Google Scholar
Leads RR, Weinstein JE. Occurrence of tire wear particles and other microplastics within the tributaries of the Charleston Harbor Estuary, South Carolina, USA. Mar Pollut Bull. 2019;145:569–82. https://doi.org/10.1016/j.marpolbul.2019.06.061.
Article
CAS
Google Scholar
Redondo-Hasselerharm PE, De Ruijter VN, Mintenig SM, Verschoor A, Koelmans AA, Redondo Hasselerharm PE, et al. Ingestion and chronic effects of car tire tread particles on freshwater benthic macroinvertebrates. Environ Sci Technol. 2018;52(23):13986–94. https://doi.org/10.1021/acs.est.8b05035.
Article
CAS
Google Scholar
Halle LL, Palmqvist A, Kampmann K, Jensen A, Hansen T, Khan FR. Tire wear particle and leachate exposures from a pristine and road-worn tire to Hyalella azteca: comparison of chemical content and biological effects. Aquat Toxicol. 2021;232:105769. https://doi.org/10.1016/j.aquatox.2021.105769.
Article
CAS
Google Scholar
Khan FR, Halle LL, Palmqvist A. Acute and long-term toxicity of micronized car tire wear particles to Hyalella azteca. Aquat Toxicol. 2019;213(February):105216 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0166445X19301729.
Article
CAS
Google Scholar
Kukutschova J, Moravec P, Tomasek V, Matejka V, Smolik J, Schwarz J, et al. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes. Environ Pollut. 2011;159(4):998–1006. https://doi.org/10.1016/j.envpol.2010.11.036.
Article
CAS
Google Scholar
Kumata H, Yamada J, Masuda K, Takada H, Sato Y, Sakurai T, et al. Benzothiazolamines as tire-derived molecular markers: Sorptive behavior in street runoff and application to source apportioning. Environ Sci Technol. 2002;36(4):702–8. https://doi.org/10.1021/es0155229.
Article
CAS
Google Scholar
Lassen C, Hansen SF, Magnusson K, Norén F, Hartmann NIB, Jensen PR, et al. Microplastics occurrence, effects and sources of releases to the environment in Denmark. Copenhagen: Danish Environmental Protection Agency; 2015.
Rogge WF, Hildemann LM, Mazurek MA, Cass G, Simoneit BRT. Sources of fine organic aerosol .3. road dust, tire debris, and organometallic brake lining dust - roads as sources and sinks. Environ Sci Technol. 1993;27(9):1892–904. https://doi.org/10.1021/es00046a019.
Article
CAS
Google Scholar
Staples C, Dorn P, Klecka G, O’Block S, Harris L. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 1998;36(10):2149–73. https://doi.org/10.1016/S0045-6535(97)10133-3.
Article
CAS
Google Scholar
Thorpe A, Harrison RM. Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ. 2008;400(1–3):270–82. https://doi.org/10.1016/j.scitotenv.2008.06.007.
Article
CAS
Google Scholar
Wahid SMS. Automotive brake wear: a review. Environ Sci Pollut Res. 2018;25(1):174–80. https://doi.org/10.1007/s11356-017-0463-7.
Article
Google Scholar
Andersson Å, Sörme L. Substansflödesanalys – av alkylfenoler och alkylfenoletoxilater i Stockholms stad 2004 (substance flow analysis - of alkylphenols and alkylphenol in the city of Stockholm 2004). issn: 1653–9168; 2004.
Google Scholar
Aznar A, Caprari J, Meda J, Slutzky O. Study of formulation variables of thermoplastic reflecting materials for traffic marking. J Coatings Technol. 1997;69(868):33–8. https://doi.org/10.1007/BF02696247.
Article
CAS
Google Scholar
Chan D, Stachowiak G. Review of automotive brake friction materials. Proceedings of the Institution of Mechanical Engineers Part D-9. J Automob Eng. 2004;218(D9):953–66. https://doi.org/10.1243/0954407041856773.
Article
Google Scholar
Cruz M, Klein A, Steiner V. Sustainability assessment of road marking systems. 6th Transport Research Arena April 18-21, 2016. Transp Res Procedia. 2016;14(2016):869–75. https://doi.org/10.1016/j.trpro.2016.05.035.
Article
Google Scholar
Filip P, Weiss Z, Rafaja D. On friction layer formation in polymer matrix composite materials for brake applications. Wear. 2002;252(3–4):189–98. https://doi.org/10.1016/S0043-1648(01)00873-0.
Article
CAS
Google Scholar
Grigoratos T, Martini G. Non-exhaust traffic related emissions – brake and tyre wear PM. Luxembourg: Publications Office of the European Union; 2014.
Google Scholar
Grung M, Vikan H, Hertel-Aas T, Meland S, Thomas KV, Ranneklev S. Roads and motorized transport as major sources of priority substances? A data register study. -part A-current issues. J Toxicol Environ Health. 2017;80(16–18):1031–47. https://doi.org/10.1080/15287394.2017.1352206.
Article
CAS
Google Scholar
Horton AA, Svendsen C, Williams RJ, Spurgeon DJ, Lahive E. Large microplastic particles in sediments of tributaries of the river thames, UK - abundance, sources and methods for effective quantification. Mar Pollut Bull. 2017;114(1):218–26. https://doi.org/10.1016/j.marpolbul.2016.09.004.
Article
CAS
Google Scholar
de Ruijter VN, Redondo-Hasselerharm PE, Gouin T, Koelmans AA. Quality criteria for microplastic effect studies in the context of risk assessment: a critical review. Environ Sci Technol. 2020;54(19):11692–705. https://doi.org/10.1021/acs.est.0c03057 Cited 2020 Oct 30.
Article
CAS
Google Scholar
Koelmans AA, Redondo-Hasselerharm PE, Mohamed Nor NH, Kooi M. Solving the nonalignment of methods and approaches used in microplastic research to consistently characterize risk. Environ Sci Technol. 2020;54(19):12307–15. https://doi.org/10.1021/acs.est.0c02982 Cited 2020 Dec 15.
Article
CAS
Google Scholar
Diamond J, Altenburger R, Coors A, Dyer SD, Focazio M, Kidd K, et al. Use of prospective and retrospective risk assessment methods that simplify chemical mixtures associated with treated domestic wastewater discharges. Environ Toxicol Chem. 2018;37(3):690–702. https://doi.org/10.1002/etc.4013.
Article
CAS
Google Scholar
Posthuma L, de Zwart D. Species sensitivity distributions. In: Wexler P, editor. Encyclopedia of toxicology. 3rd ed. San Diego: Elsevier/Academic Press; 2014. p. 363–8. https://doi.org/10.1016/B978-0-12-386454-3.00580-7.
European Commission. Technical guidance document on risk assessment. Part II. Luxembourg: Office for official publications of the European Communities; 2003. p. 337. Available from: https://echa.europa.eu/documents/10162/16960216/tgdpart2_2ed_en.pdf
Google Scholar
Besseling E, Redondo-Hasselerharm P, Foekema EM, Koelmans AA. Quantifying ecological risks of aquatic micro- and nanoplastic. Crit Rev Environ Sci Technol. 2019;49(1):32–80. https://doi.org/10.1080/10643389.2018.1531688.
Article
Google Scholar
Adam V, Yang T, Nowack B. Toward an ecotoxicological risk assessment of microplastics: comparison of available hazard and exposure data in freshwaters. Environ Toxicol Chem. 2019;38(2):436–47. https://doi.org/10.1002/etc.4323.
Article
CAS
Google Scholar
Baun A, Eriksson E, Ledin A, Mikkelsen PS. A methodology for ranking and hazard identification of xenobiotic organic compounds in urban stormwater. Sci Total Environ. 2006;370(1):29–38. https://doi.org/10.1016/j.scitotenv.2006.05.017.
Article
CAS
Google Scholar
Björklund K, Cousins AP, Strömvall A-M, Malmqvist P-A. Phthalates and nonylphenols in urban runoff: occurrence, distribution and area emission factors. Sci Total Environ. 2009;407(16):4665–72. https://doi.org/10.1016/j.scitotenv.2009.04.040.
Article
CAS
Google Scholar
Ahlers J, Riedhammer C, Vogliano M, Ebert R-U, Kühne R, Schüürmann G. Acute to chronic ratios in aquatic toxicity—variation across trophic levels and relationship with chemical structure. Env Toxicol. 2006;25(11):2937–45. https://doi.org/10.1897/05-701R.1.
Article
CAS
Google Scholar
Traas TP, Van De Meent D, Posthuma L, Hamers T, Kater BJ, De Zwart D, et al. The potentially affected fraction as a measure of ecological risk. In: Species sensitivity distributions in ecotoxicology. Boca Raton: CRC Press; 2001. p. 315–44. https://www.taylorfrancis.com/books/e/9780429136986/chapters/10.1201/9781420032314-20.
Aldenberg T, Jaworska JS. Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicol Environ Saf. 2000;46(1):1–18. https://doi.org/10.1006/eesa.1999.1869.
Article
CAS
Google Scholar
Posthuma L, Suter GW II, Traas TP. Species sensitivity distributions in ecotoxicology. Boca Raton: Lewis Publishers; 2002.
Forbes VE, Calow P. Species sensitivity distributions revisited: a critical appraisal. Hum Ecol Risk Assess. 2002;8(3):473–92. https://doi.org/10.1080/10807030290879781.
Article
Google Scholar
Forbes VE, Calow P. Sensitivity distributions - why species selection matters. SETAC Globe. 2002;3(5):22–3.
Google Scholar
Van Vlaardingen P, Traas T, Wintersen A, Aldenberg T. ETX 2.0. A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data. RIVM Report no. 601501028; 2004.
Google Scholar
Aldenberg T, Slob W. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicol Environ Saf. 1993;25(1):48–63. https://doi.org/10.1006/eesa.1993.1006.
Article
CAS
Google Scholar
Blaise C, Vasseur P. Algal microplate toxicity test. In: Blaise C, Férard J, editors. Small-scale freshwater toxicity investigations, vol. 1. Dordrecht: Springer; 2005. p. 137–79. https://doi.org/10.1007/1-4020-3120-3_4.
Chapter
Google Scholar
Dröge R, Tromp P. Measurements of organic micropollutants, microplastics and associated substances from road transport. In: CEDR Call 2016: environmentally sustainable roads: surface- and groundwater quality MICROPROOF micropollutants in road run-off. Microproof deliverable 6; 2019.
Google Scholar
Klöckner P, Reemtsma T, Eisentraut P, Braun U, Ruhl AS, Wagner S. Tire and road wear particles in road environment – quantification and assessment of particle dynamics by Zn determination after density separation. Chemosphere. 2019;222:714–21. https://doi.org/10.1016/j.chemosphere.2019.01.176.
Article
CAS
Google Scholar
Eisentraut P, Dümichen E, Ruhl AS, Jekel M, Albrecht M, Gehde M, et al. Two birds with one stone—fast and simultaneous analysis of microplastics: microparticles derived from thermoplastics and tire wear. Environ Sci Technol Lett. 2018;5(10):608–13 Available from: https://pubs.acs.org/doi/10.1021/acs.estlett.8b00446. Cited 2020 Dec 15.
Article
CAS
Google Scholar
Tromp K. Helofyteninfiltratiesystemen voor zuivering van wegwater - onderzoek naar het milieurendement van een helofyteninfiltratiesloot langs de A1 in ‘t gooi. 2005. Available from: https://edepot.wur.nl/407442
Google Scholar
Gasperi J, Sebastian C, Ruban V, Delamain M, Percot S, Wiest L, et al. Micropollutants in urban stormwater: occurrence, concentrations, and atmospheric contributions for a wide range of contaminants in three French catchments. Environ Sci Pollut Res. 2014;21(8):5267–81. https://doi.org/10.1007/s11356-013-2396-0.
Article
CAS
Google Scholar
Holsteijn SD. Micropollutants in Berlin’s urban rainwater runoff. Berlin: Van Hall Larenstein; 2014. Available from: https://edepot.wur.nl/327101
Dsikowitzky L, Schwarzbauer J. Hexa (methoxymethyl)melamine: an emerging contaminant in German rivers. Water Environ Res. 2015;87(5):461–9. Available from: http://openurl.ingenta.com/content/xref?genre=article&issn=1061-4303&volume=87&issue=5&spage=461. https://doi.org/10.2175/106143014X14060523640919.
Article
CAS
Google Scholar
Seitz W, Winzenbacher R. A survey on trace organic chemicals in a German water protection area and the proposal of relevant indicators for anthropogenic influences. Environ Monit Assess. 2017;189(6):244. https://doi.org/10.1007/s10661-017-5953-z.
Article
CAS
Google Scholar
European Commission. European Union Risk Assessment Report COAL-TAR PITCH, HIGH TEMPERATURE. Luxembourg; 2008. Available from: https://echa.europa.eu/documents/10162/433ccfe1-f9a5-4420-9dae-bb316f898fe1
European Commission. Proposal for a Directive of the European Parliament and of the Council amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Vol. 0429, COM (2011) 876 final; 2012. p. 35.
Google Scholar
European Commission. European Union Risk Assessment Report 4,4′-ISOPROPYLIDENEDIPHENOL (BISPHENOL-A). 2010. Available from: https://echa.europa.eu/documents/10162/c6a8dcfc-1823-4d31-8a24-2c1168f0d217
Google Scholar
European Commission. European Union Risk Assessment Report bis (2-ethylhexyl) phthalate (DEHP). Luxembourg: Office for Official Publications of the European Communities; 2008. https://doi.org/10.2788/80862.
European Commission. Fluoranthene EQS dossier 2011; 2011. p. 1–32.
Google Scholar
Slobodnik J, Mrafkova L, Carere M, Ferrara F, Pennelli B, Schüürmann G, et al. Identification of river basin specific pollutants and derivation of environmental quality standards: a case study in the Slovak Republic. TrAC - Trends Anal Chem. 2012;41:133–45. https://doi.org/10.1016/j.trac.2012.08.008.
Article
CAS
Google Scholar
ECHA. ECHA registration dossier Benzothiazole-2-thiol. European Chemicals Agency registration dossiers. 2019. Available from: https://echa.europa.eu/registration-dossier/-/registered-dossier/13432/6/1#. Cited 2019 Jul 10.
Google Scholar
ECHA. Background document to the Opinion on the Annex XV dossier proposing restrictions on NONYLPHENOL and NONYLPHENOL ETHOXYLATES, vol. 1. Helsinki; 2014. Available from: https://echa.europa.eu/documents/10162/fa20d0e0-83fc-489a-9ee9-01a68383e3c0
Brooke D, Footitt A, Nwaogu TA. Environmental risk evaluation report: 4-tert-octylphenol. Bristol: Environment Agency; 2005.
ECHA. ECHA registration dossier Methyl-1H-benzotriazole. European Chemicals Agency registration dossiers. 2019. Available from: https://echa.europa.eu/registration-dossier/-/registered-dossier/14272/6/1. Cited 2019 Jul 10.
Google Scholar
European Commission. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EC, 84/156/EEC, 84/491/EEC, 86/2. Off J Eur. 2008;L348:84–97.
Google Scholar
Keur MC, Kaag NHBM. Toxicity of 3 water samples tested with the acute fresh crustacean test using Daphnia magna; 2019.
Book
Google Scholar
Keur MC, Kaag NHBM. Toxicity of 3 water samples tested with the algae growth inhibition test using Raphidocelis subcapitata; 2019.
Book
Google Scholar
Keur MC, Kaag NHBM. Toxicity of 3 water samples tested with the Bacteria luminescence inhibition test using Vibrio fischeri (Microtox); 2019.
Google Scholar
Kayhanian M, Stransky C, Bay S, Lau SL, Stenstrom MK. Toxicity of urban highway runoff with respect to storm duration. Sci Total Environ. 2008;389(2–3):386–406. https://doi.org/10.1016/j.scitotenv.2007.08.052.
Article
CAS
Google Scholar
Hsieh CY, Tsai MH, Ryan DK, Pancorbo OC. Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox® chronic toxicity test. Sci Total Environ. 2004;320(1):37–50. https://doi.org/10.1016/S0048-9697(03)00451-0.
Article
CAS
Google Scholar
Van Sprang P, Delbeke K. Acute & chronic ecotoxicity of soluble copper species in voew of hazard classification of copper and copper compounds. 2019. Available from: https://echa.europa.eu/documents/10162/13626/attachment_4_copper_flakes_en.pdf.
Google Scholar
Heijerick DG, Bossuyt BTA, De Schamphelaere KAC, Indeherberg M, Mingazzini M, Janssen CR. Effect of varying physicochemistry of European surface waters on the copper toxicity to the green alga Pseudokirchneriella subcapitata. Ecotoxicology. 2005;14(6):661–70. https://doi.org/10.1007/s10646-005-0014-8.
Article
CAS
Google Scholar
European Union. Risk assessment report. Zinc metal. Part I - environment. 2010. Available from: http://publications.jrc.ec.europa.eu/repository/handle/JRC61245.
Google Scholar
Clément B, Raevel V, Renard O. Ecotoxicological assessment of road runoff residues for aquatic surface ecosystems in a scenario of reuse. J Soils Sediments. 2010;10(7):1255–66. https://doi.org/10.1007/s11368-010-0226-2.
Article
CAS
Google Scholar
Björklund K. Substance flow analyses of phthalates and nonylphenols in stormwater. Water Sci Technol. 2010;62(5):1154–60. https://doi.org/10.2166/wst.2010.923.
Article
CAS
Google Scholar
OSPAR. Hazardous substances series: Octylphenol. Publication number 273/2006. 2006.
Google Scholar
Voutsa D, Hartmann P, Schaffner C, Giger W. Benzotriazoles, alkylphenols and bisphenol a in municipal wastewaters and in the Glatt River, Switzerland. Environ Sci Pollut Res. 2006;13(5):333–41. https://doi.org/10.1065/espr2006.01.295.
Article
CAS
Google Scholar
Kloepfer A, Jekel M, Reemtsma T. Occurence, sources, and fate of Benzothiazoles in municipal wastewater treatment plants. Environ Sci Technol. 2005;39(10):3792–8. https://doi.org/10.1021/es048141e.
Article
CAS
Google Scholar
Liu F, Olesen KB, Borregaard AR, Vollertsen J. Microplastics in urban and highway stormwater retention ponds. Sci Total Environ. 2019;671:992–1000. https://doi.org/10.1016/j.scitotenv.2019.03.416.
Article
CAS
Google Scholar
Koelmans AA, Mohamed Nor NH, Hermsen E, Kooi M, Mintenig SM, De France J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. Elsevier Ltd. 2019;155:410–22.
Article
CAS
Google Scholar
Kooi M, Koelmans AA. Simplifying microplastic via continuous probability distributions for size, shape, and density. Environ Sci Technol Lett. 2019;6(9):551–7 Available from: https://pubs.acs.org/sharingguidelines. Cited 2020 Nov 6.
Article
CAS
Google Scholar
Iwasaki Y, Kotani K, Kashiwada S, Masunaga S. Does the choice of NOEC or EC10 affect the hazardous concentration for 5% of the species? Environ Sci Technol. 2015;49(15):9326–30. https://doi.org/10.1021/acs.est.5b02069.
Article
CAS
Google Scholar
Kooi M, Besseling E, Kroeze C, van Wezel AP, Koelmans AA. Modeling the fate and transport of plastic debris in freshwaters: review and guidance. In: Wagner M, Lambert S, editors. Freshwater microplastics the handbook of environmental chemistry, vol. 58. Cham: Springer; 2018. https://doi.org/10.1007/978-3-319-61615-5_7.
Chapter
Google Scholar
ECHA. Guidance on information requirements and chemical safety assessment. Chapter R.10: Characterisation of dose [concentration]-response for environment. Helsinki: European Chemicals Agency; 2008.
De Zwart D, Posthuma L. Complex mixture toxicity for single and multiple species: proposed methodologies. Environ Toxicol Chem. 2005;24(10):2665–76. https://doi.org/10.1897/04-639R.1.
Article
Google Scholar
Wang W, Gao H, Jin S, Li R, Na G. The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: a review. Ecotoxicol Environ Saf. 2019;173(November 2018):110–7.
CAS
Google Scholar
CROW. Polymer properties database. 2019. Available from: https://polymerdatabase.com/index.html. Cited 2019 Jul 9.
Google Scholar
Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A. Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules. 1994;27(17):4639–47. https://doi.org/10.1021/ma00095a001.
Article
CAS
Google Scholar
Khan FR, Halle LL, Palmqvist A. Acute and long-term toxicity of micronized car tire wear particles to Hyalella azteca. Aquat Toxicol. 2019;213:105216. https://doi.org/10.1016/j.aquatox.2019.05.018.
Article
CAS
Google Scholar
Burns EE, Boxall ABA. Corrigendum to: Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps: Microplastics in the environment (Environmental Toxicology and Chemistry, (2018), 37, 11, (2776–2796), 10.1002/etc.4268). Environ Toxicol Chem. 2019;38(3):695.
Article
Google Scholar
Burns EE, Boxall ABA. Microplastics in the aquatic environment: evidence for or against adverse impacts and major knowledge gaps. Environ Toxicol Chem. 2018;37(11):2776–96. https://doi.org/10.1002/etc.4268.
Article
CAS
Google Scholar
Van Cauwenberghe L. Occurrence, effects and risks of marine microplastics; 2015. p. 215. Available from: http://www.vliz.be/en/imis?module=ref&refid=253398
Google Scholar
VKM, Skåre JU, Alexander J, Haave M, Jakubowicz I, Knutsen HK, et al. Microplastics; occurrence, levels and implications for environment and human health related to food, Scientific opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment. VKM report 2019:16. Oslo: Norwegian Scientific Committee for Food and Environment (VKM); 2019.