Shen M, Zhu Y, Zhang Y, Zeng G, Wen X, Yi H, Shujing Y, Ren X, Song B. Micro(nano)plastics: Unignorable vectors for organisms. Mar Pollut Bull. 2019;139:328–31. https://doi.org/10.1016/j.marpolbul.2019.01.004.
Article
CAS
Google Scholar
Statista https://www.statista.com/statistics/1245264/polyethylene-terephthalate-market-volume-worldwide/
Koelmans AA, Mohamed Nor NH, Hermsen E, Kooi M, Mintenig SM, De France J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019;155:410–22. https://doi.org/10.1016/j.watres.2019.02.054.
Article
CAS
Google Scholar
Lu S, Qiu R, Hu J, Li X, Chen Y, Zhang X, He D. Prevalence of microplastics in animal-based traditional medicinal materials: Widespread pollution in terrestrial environments. Sci Total Environ. 2020;709:136214. https://doi.org/10.1016/j.scitotenv.2019.136214.
Article
CAS
Google Scholar
Yin L, Jiang C, Wen X, Du C, Zhong W, Feng Z, Ma Y. Microplastic pollution in surface water of urban lakes in Changsha, China. Int J Environ Res Public Health. 2019;16(9). https://doi.org/10.3390/ijerph16091650
RW Obbard 2018 Microplastics in Polar Regions: The role of long range transport https://doi.org/10.1016/j.coesh.2017.10.004
Li J, Yang D, Li L, Jabeen K, Shi H. Microplastics in commercial bivalves from China. Environ Pollut. 2015;207:190–5. https://doi.org/10.1016/j.envpol.2015.09.018.
Article
CAS
Google Scholar
Zhang Y, Kang S, Allen S, Allen D, Gao T, Sillanpää M. Atmospheric microplastics: A review on current status and perspectives. Earth Sci Rev. 2020;203:103118. https://doi.org/10.1016/j.earscirev.2020.103118.
Article
CAS
Google Scholar
Pennino MG, Bachiller E, Lloret-Lloret E, Albo-Puigserver M, Esteban A, Jadaud A, Bellido JM, Coll M. Ingestion of microplastics and occurrence of parasite association in Mediterranean anchovy and sardine. Marine Pollution Bulletin. 2020;158:111399. https://doi.org/10.1016/j.marpolbul.2020.111399.
Article
CAS
Google Scholar
Kasamesiri P, Thaimuangpho W. Microplastics ingestion by freshwater fish in the chi river, Thailand. Int J GEOMATE. 2020;18(67):114–9. https://doi.org/10.21660/2020.67.9110
Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Papa F, Rongioletti MCA, Baiocco F, Draghi S, D’Amore E, Rinaldo D, Matta M, Giorgini E. Plasticenta: First evidence of microplastics in human placenta. Environment International. 2021;146:106274. https://doi.org/10.1016/j.envint.2020.106274.
Article
CAS
Google Scholar
Zhang J, Wang L, Trasande L, Kannan K. Occurrence of Polyethylene Terephthalate and Polycarbonate Microplastics in Infant and Adult Feces. Environ Sci Technol Lett. 2021;8(11):989–94. https://doi.org/10.1021/acs.estlett.1c00559.
Article
CAS
Google Scholar
Rubio L, Marcos R, Hernández A. Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models. J Toxicol Environ Health B Crit Rev. 2020;23(2):51–68. https://doi.org/10.1080/10937404.2019.1700598.
Article
CAS
Google Scholar
Lee H, Kunz A, Shim WJ, Walther BA. Microplastic contamination of table salts from Taiwan, including a global review. Sci Rep. 2019;9(1):10145. https://doi.org/10.1038/s41598-019-46417-z.
Article
CAS
Google Scholar
Wong SL, Nyakuma BB, Wong KY, Lee CT, Lee TH, Lee CH. Microplastics and nanoplastics in global food webs: A bibliometric analysis (2009–2019). Mar Pollut Bull. 2020;158:111432. https://doi.org/10.1016/j.marpolbul.2020.111432.
Article
CAS
Google Scholar
Diaz-Basantes MF, Conesa JA, Fullana A. Microplastics in honey, beer, milk and refreshments in Ecuador as emerging contaminants. Sustainability (Switzerland). 2020;12(12):5514. https://doi.org/10.3390/SU12145514.
Article
Google Scholar
Hernandez LM, Xu EG, Larsson HCE, Tahara R, Maisuria VB, Tufenkji N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ Sci Technol. 2019;53(21):12300–10. https://doi.org/10.1021/acs.est.9b02540.
Article
CAS
Google Scholar
Barboza LGA, Dick Vethaak A, Lavorante BRBO, Lundebye AK, Guilhermino L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. Elsevier Ltd. 2018. https://doi.org/10.1016/j.marpolbul.2018.05.047
De-la-Torre GE. Microplastics: an emerging threat to food security and human health. J. Food Sci. Technol. Springer. 2020. https://doi.org/10.1007/s13197-019-04138-1
Van Cauwenberghe L, Janssen CR. Microplastics in bivalves cultured for human consumption. Environ Pollut. 2014;193:65–70. https://doi.org/10.1016/j.envpol.2014.06.010.
Article
CAS
Google Scholar
Mohamed Nor NH, Kooi M, Diepens NJ, Koelmans AA. Lifetime accumulation of microplastic in children and adults. Environ Sci Technol. 2021;55(8):5084–96. https://doi.org/10.1021/acs.est.0c07384.
Article
CAS
Google Scholar
Senathirajah K, Attwood S, Bhagwat G, Carbery M, Wilson S, Palanisami T. Estimation of the mass of microplastics ingested–A pivotal first step towards human health risk assessment. J Hazard Mater. 2021;404:124004. https://doi.org/10.1016/j.jhazmat.2020.124004.
Article
CAS
Google Scholar
Magrì D, Sánchez-Moreno P, Caputo G, Gatto F, Veronesi M, Bardi G, Fragouli D. Laser Ablation as a Versatile Tool To Mimic Polyethylene Terephthalate Nanoplastic Pollutants: Characterization and Toxicology Assessment. ACS Nano. 2018;12(8):7690–700. https://doi.org/10.1021/acsnano.8b01331.
Article
CAS
Google Scholar
Rodríguez-Hernández AG, Muñoz-Tabares JA, Aguilar-Guzmán JC, Vazquez-Duhalt R. A novel and simple method for polyethylene terephthalate (PET) nanoparticle production. Environ Sci Nano. 2019;6(7):2031–6. https://doi.org/10.1039/c9en00365g.
Article
CAS
Google Scholar
Ida F, Ramasubbu S, Mukherjee A, Chandrasekaran N. Polystyrene nanoplastics dysregulate lipid metabolism in murine macrophages in vitro. Toxicology. 2021;458:152850. https://doi.org/10.1016/j.tox.2021.152850.
Article
CAS
Google Scholar
Wu B, Wu X, Liu S, Wang Z, Chen L. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere. 2019;221:333–41. https://doi.org/10.1016/j.chemosphere.2019.01.056.
Article
CAS
Google Scholar
Schirinzi GF, Pérez-Pomeda I, Sanchís J, Rossini C, Farré M, Barceló D. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ Res. 2017;159:579–87. https://doi.org/10.1016/j.envres.2017.08.043.
Article
CAS
Google Scholar
Prietl B, Meindl C, Roblegg E, Pieber TR, Lanzer G, Fröhlich E. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biol Toxicol. 2014;30:1–16. https://doi.org/10.1007/s10565-013-9265-y.
Article
CAS
Google Scholar
Bordbar A, Mo ML, Nakayasu ES, Schrimpe-Rutledge AC, Kim Y-M, Metz TO, Jones MB, Frank BC, Smith RD, Peterson SN, Hyduke DR, Adkins JN, Palsson BO. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol Syst Biol. 2012;8:558. https://doi.org/10.1038/msb.2012.21.
Article
CAS
Google Scholar
Bhosle VK, Mukherjee T, Huang YW, Patel S, Pang BW, Liu GY, Robinson LA. SLIT2/ROBO1-signaling inhibits macropinocytosis by opposing cortical cytoskeletal remodeling. Nat Commun. 2020;11(1):4112. https://doi.org/10.1038/s41467-020-17651-1.
Article
CAS
Google Scholar
Soukup J, Becker S. Human alveolar macrophage responses to air pollution particulates are associated with insoluble components of coarse material, including particulate endotoxin. Toxicol Appl Pharmacol. 2001;171(1). https://doi.org/10.1006/TAAP.2000.9096
Han X, Ding S, Jiang H, Liu G. Roles of Macrophages in the Development and Treatment of Gut Inflammation. Front Cell Dev Biol. 2021;9:625423. https://doi.org/10.3389/fcell.2021.625423.
Article
Google Scholar
De Schepper S, Verheijden S, Aguilera-Lizarraga J, Viola MF, Boesmans W, Stakenborg N, Voytyuk I, et al. Self-Maintaining Gut Macrophages Are Essential for Intestinal Homeostasis. Cell. 2018;175:400–15. https://doi.org/10.1016/j.cell.2018.07.048
Ji W, Wei-Dong C, Yan-Dong W. The Relationship Between Gut Microbiota and Inflammatory Diseases: The Role of Macrophages. Front Microbiol. 2020;11:1065. https://doi.org/10.3389/fmicb.2020.01065.
Article
Google Scholar
Viola MF, Boeckxstaens G. Intestinal resident macrophages: Multitaskers of the gut. Neurogastroenterol Motil. 2020;32:e13843. https://doi.org/10.1111/nmo.13843.
Article
Google Scholar
Fu W, Min J, Jiang W, Li Y, Zhang W. Separation, characterization and identification of microplastics and nanoplastics in the environment. Sci Total Environ. 2020;721:137561. https://doi.org/10.1016/j.scitotenv.2020.137561.
Article
CAS
Google Scholar
Halle AT, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L, Gigault J. Nanoplastic in the North Atlantic Subtropical Gyre. Environ Sci Technol. 2017;51(23):13689–97. https://doi.org/10.1021/acs.est.7b03667.
Article
CAS
Google Scholar
Lionetto F, Corcione CE, Rizzo A, Maffezzoli A. Production and Characterization of Polyethylene Terephthalate Nanoparticles. Polymers. 2021;13(21):3745. https://doi.org/10.3390/polym13213745 (MDPI AG).
Article
CAS
Google Scholar
Foetisch A, Filella M, Watts B, Vinot LH, Bigalke M. Identification and characterisation of individual nanoplastics by scanning transmission X-ray microscopy (STXM) J Hazard Mater. 2021;127804. https://doi.org/10.1016/j.jhazmat.2021.127804
Chen Z, Hay JN, Jenkins MJ. FTIR spectroscopic analysis of poly (ethylene terephthalate) on crystallization. Eur Polymer J. 2012;48(9):1586–610. https://doi.org/10.1016/j.eurpolymj.2012.06.006.
Article
CAS
Google Scholar
Aleshin VA, Artiukhov AV, Oppermann H, Kazantsev AV, Lukashev NV, Bunik VI. Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays. Cells. 2015;4(3):427–51. https://doi.org/10.3390/cells4030427.
Article
CAS
Google Scholar
Ching YP, Zhou HJ, Yuan JG, Qiang BQ, Kung HF, Jin DY. Identification and characterization of FTSJ2, a novel human nucleolar protein homologous to bacterial ribosomal RNA methyltransferase. Genomics. 2002;79(1):2–6. https://doi.org/10.1006/geno.2001.6670.
Article
CAS
Google Scholar
Dimitrova DG, Teysset L, Carré C. RNA 2′-O-Methylation (Nm) modification in human diseases. Genes. 2019;10(2):117. https://doi.org/10.3390/genes10020117.
Article
CAS
Google Scholar
Liu B, Li J, Zheng M, Ge J, Li J, Yu P. MiR-542-3p exerts tumor suppressive functions in non-small cell lung cancer cells by upregulating FTSJ2. Life Sci. 2017;188:87–95. https://doi.org/10.1016/j.lfs.2017.08.018.
Article
CAS
Google Scholar
Rorbach J, Boesch P, Gammage PA, Nicholls TJJ, Pearce SF, Patel D, Minczuk M. MRM2 and MRM3 are involved in biogenesis of the large subunit of the mitochondrial ribosome. Mol Biol Cell. 2014;25(17):2542–55. https://doi.org/10.1091/mbc.e14-01-0014.
Article
Google Scholar
Bügl H, Fauman EB, Staker BL, Zheng F, Kushner SR, Saper MA, Jakob U. RNA methylation under heat shock control. Mol Cell. 2000;6(2):349–60. https://doi.org/10.1016/S1097-2765(00)00035-6.
Article
Google Scholar
Kleywegt GJ, Jones TA. Detecting folding motifs and similarities in protein structures. Method Enzymol. 1997;277:525–45. https://doi.org/10.1016/S0076-6879(97)77029-0.
Article
CAS
Google Scholar
Jalkanen A, Lassheikki V, Torsti T, Gharib E, Lehtonen M, Juvonen RO. Tissue and interspecies comparison of catechol- O -methyltransferase mediated catalysis of 6- O -methylation of esculetin to scopoletin and its inhibition by entacapone and tolcapone. Xenobiotica. 2020:1–11. https://doi.org/10.1080/00498254.2020.1853850
Männistö PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev. 1999;51(4):593–628 (PMID: 10581325).
Google Scholar
Francia V, Yang K, Deville S, Reker-Smit C, Nelissen I, Salvati A. Corona composition can affect the mechanisms cells use to internalize nanoparticles. ACS Nano. 2019;13(10):11107–21. https://doi.org/10.1021/acsnano.9b03824.
Article
CAS
Google Scholar
Makhdoumi P, Karimi H, Khazaei M. Review on Metal-Based Nanoparticles: Role of Reactive Oxygen Species in Renal Toxicity. Chem Res Toxicol. 2020;33(10):2503–14. https://doi.org/10.1021/acs.chemrestox.9b00438.
Article
CAS
Google Scholar
Yu Z, Li Q, Wang J, Yu Y, Wang Y, Zhou Q, Li P. Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field. Nanoscale Res Lett. 2020;15(1):115. https://doi.org/10.1186/s11671-020-03344-7.
Article
CAS
Google Scholar
Kotsias F, Hoffmann E, Amigorena S, Savina A. Reactive Oxygen Species Production in the Phagosome: Impact on Antigen Presentation in Dendritic Cells. Antioxid Redox Signal. 2013;18(6):714–29. https://doi.org/10.1089/ars.2012.4557.
Article
CAS
Google Scholar
Paardekooper LM, Dingjan I, Linders PTA, Staal AHJ, Cristescu SM, Verberk WCEP, Van Den Bogaart G. Human monocyte-derived dendritic cells produce millimolar concentrations of ROS in phagosomes per second. Front Immunol. 2019;10(MAY). https://doi.org/10.3389/fimmu.2019.01216
Whitcomb EA, Haines BB, Parmelee AP, Pearlman AM, Brodeur PH. Germline Structure and Differential Utilization of of Igha and Ighb VH10 Genes. J Immunol. 1999;162(3):1541–50 (http://www.jimmunol.org/content/162/3/1541).
CAS
Google Scholar
Pham-Ledard A, Prochazkova-Carlotti M, Deveza M, Laforet M-P, Beylot-Barry M, Vergier B, Gachard N. Molecular analysis of immunoglobulin variable genes supports a germinal center experienced normal counterpart in primary cutaneous diffuse large B-cell lymphoma, leg-type. J Dermatol Sci. 2017;88(2):238–46. https://doi.org/10.1016/j.jdermsci.2017.07.008.
Article
CAS
Google Scholar
Walsh SH, Rosenquist R. Immunoglobulin Gene Analysis of Mature B-Cell Malignancies: Reconsideration of Cellular Origin and Potential Antigen Involvement in Pathogenesis. Med Oncol. 2005;22(4):327–42. https://doi.org/10.1385/MO:22:4:327.
Article
CAS
Google Scholar
Fuchs T, Hahn M, Ries L, Giesler S, Busch S, Wang C, Neumaier M. Expression of combinatorial immunoglobulins in macrophages in the tumor microenvironment. PLoS ONE. 2018;13(9):e0204108. https://doi.org/10.1371/journal.pone.0204108.
Article
CAS
Google Scholar
Tu LN, Timms AE, Kibiryeva N, Bittel D, Pastuszko A, Nigam V, Pastuszko P. Transcriptome profiling reveals activation of inflammation and apoptosis in the neonatal striatum after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2019;158(3):882-890.e4. https://doi.org/10.1016/j.jtcvs.2019.02.091.
Article
CAS
Google Scholar
Morishita H, Yagi T. Protocadherin family: diversity, structure, and function. Curr Opin Cell Biol. 2007. https://doi.org/10.1016/j.ceb.2007.09.006