European Centre for Disease Prevention and Control (ECDC). https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19-use-medical-masks-community.pdf. Accessed 1 July 2021.
Prata JC, Silva ALP, Walker TR, Duarte AC, Rocha-Santos T. COVID-19 pandemic repercussions on the use and management of plastics. Environ Sci Technol. 2020;54(13):7760–5. https://doi.org/10.1021/acs.est.0c02178.
Article
CAS
Google Scholar
Prather KA, Wang CC, Schooley RT. Reducing transmission of SARS-CoV-2: masks and testing are necessary to combat asymptomatic spread in aerosols and droplets. Science. 2020;368(6498):1422–4. https://doi.org/10.1126/science.abc6197.
Article
CAS
Google Scholar
Worby CJ, Chang HH. Face mask use in the general population and optimal resource allocation during the COVID-19 pandemic. Nat Commun. 2020;11(1):4049. https://doi.org/10.1038/s41467-020-17922-x.
Article
CAS
Google Scholar
Statista. https://www.statista.com/statistics/1099824/china-medical-mask-annual-production-volume/. Accessed 1 july 2021.
Aragaw TA. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar Pollut Bull. 2020;159:111517. https://doi.org/10.1016/j.marpolbul.2020.111517.
Article
CAS
Google Scholar
Fadare OO, Okoffo ED. Covid-19 face masks: a potential source of microplastic fibres in the environment. Sci Total Environ. 2020;737:140279. https://doi.org/10.1016/j.scitotenv.2020.140279.
Article
CAS
Google Scholar
O’dowd K, Nair KM, Forouzandeh P, Mathew S, Grant J, Moran R, et al. Face masks and respirators in the fight against the COVID-19 pandemic: a review of current materials, advances and future perspectives. Materials. 2020;13(15):3363. https://doi.org/10.3390/ma13153363.
Article
CAS
Google Scholar
Chua MH, Cheng W, Goh SS, Kong J, Li B, Lim JYC, et al. Face masks in the new COVID-19 normal: materials, testing, and perspectives. Research. 2020;2020:7286735–40. https://doi.org/10.34133/2020/7286735.
Article
CAS
Google Scholar
Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS. Melt blown nanofibres: fibre diameter distributions and onset of fibre breakup. Polymer. 2007;48(11):3306–16. https://doi.org/10.1016/j.polymer.2007.04.005.
Article
CAS
Google Scholar
Jung S, Lee S, Dou X, Kwon EE. Valorization of disposable COVID-19 mask through the thermo-chemical process. Chem Eng J. 2021;405:126658. https://doi.org/10.1016/j.cej.2020.126658.
Article
CAS
Google Scholar
Sigler M. The effects of plastic pollution on aquatic wildlife: current situations and future solutions. Water Air Soil Pollut. 2014;225(11):1–9. https://doi.org/10.1007/s11270-014-2184-6.
Article
CAS
Google Scholar
Chen X, Chen X, Liu Q, Zhao Q, Xiong X, Wu C. Used disposable face masks are significant sources of microplastics to environment. Environ Pollut. 2021;285:117485. https://doi.org/10.1016/j.envpol.2021.117485.
Article
CAS
Google Scholar
Wang Z, An C, Chen X, Lee K, Zhang B, Feng Q. Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering. J Hazard Mater. 2021;417:126036. https://doi.org/10.1016/j.jhazmat.2021.126036.
Article
CAS
Google Scholar
Arp HPH, Kühnel D, Rummel C, MacLeod M, Potthoff A, Reichelt S, et al. Weathering plastics as a planetary boundary threat: exposure, fate, and hazards. Environ Sci Technol. 2021;55(11):7246–55. https://doi.org/10.1021/acs.est.1c01512.
Article
CAS
Google Scholar
Enfrin M, Dumée LF, Lee J. Nano/microplastics in water and wastewater treatment processes – origin, impact and potential solutions. Water Res. 2019;161:621–38. https://doi.org/10.1016/j.watres.2019.06.049.
Article
CAS
Google Scholar
Jahnke A, Arp HPH, Escher BI, Gewert B, Gorokhova E, Kühnel D, et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environ Sci Technol Lett. 2017;4(3):85–90. https://doi.org/10.1021/acs.estlett.7b00008.
Article
CAS
Google Scholar
Liu P, Zhan X, Wu X, Li J, Wang H, Gao S. Effect of weathering on environmental behavior of microplastics: properties, sorption and potential risks. Chemosphere. 2020;242:125193. https://doi.org/10.1016/j.chemosphere.2019.125193.
Article
CAS
Google Scholar
Song YK, Hong SH, Jang M, Han GM, Jung SW, Shim WJ. Combined effects of uv exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ Sci Technol. 2017;51(8):4368–76. https://doi.org/10.1021/acs.est.6b06155.
Article
CAS
Google Scholar
Gewert B, Plassmann MM, Macleod M. Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts. 2015;17(9):1513–21. https://doi.org/10.1039/C5EM00207A.
Article
CAS
Google Scholar
De MM, Forte C, Montagna LS, Madalena M, Marlene R, Santana C. Induced degradation of polypropylene with an organic pro-degradant additive polyolefins properties and applications view project polymer blends view project induced degradation of polypropylene with an organic pro-degradant additive greek letters. Mater Sci Eng A. 2013;3:123.
Google Scholar
Rajakumar K, Sarasvathy V, Thamarai Chelvan A, Chitra R, Vijayakumar CT. Natural weathering studies of polypropylene. J Polym Environ. 2009;17(3):191–202. https://doi.org/10.1007/s10924-009-0138-7.
Article
CAS
Google Scholar
Tocháček J, Vrátníčková Z. Polymer life-time prediction: the role of temperature in UV accelerated ageing of polypropylene and its copolymers. Polym Test. 2014;36:82–7. https://doi.org/10.1016/j.polymertesting.2014.03.019.
Article
CAS
Google Scholar
Bajer K, Braun U. Different aspects of the accelerated oxidation of polypropylene at increased pressure in an autoclave with regard to temperature, pretreatment and exposure media. Polym Test. 2014;37:102–11. https://doi.org/10.1016/j.polymertesting.2014.05.006.
Article
CAS
Google Scholar
Esmizadeh E, Tzoganakis C, Mekonnen TH. Degradation behavior of polypropylene during reprocessing and its biocomposites: thermal and oxidative degradation kinetics. Polymers. 2020;12(8):1627. https://doi.org/10.3390/polym12081627.
Article
CAS
Google Scholar
Lv Y, Huang Y, Kong M, Yang Q, Li G. Multivariate correlation analysis of outdoor weathering behavior of polypropylene under diverse climate scenarios. Polym Test. 2017;64:65–76. https://doi.org/10.1016/j.polymertesting.2017.09.040.
Article
CAS
Google Scholar
Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. Hazard Mater. 2018;344:179–99. https://doi.org/10.1016/j.jhazmat.2017.10.014.
Article
CAS
Google Scholar
Acharya S, Rumi SS, Hu Y, Abidi N. Microfibres from synthetic textiles as a major source of microplastics in the environment: a review. Text Res J. 2021;91(17-18):2136–56. https://doi.org/10.1177/0040517521991244.
Article
CAS
Google Scholar
De Falco F, Cocca M, Avella M, Thompson RC. Microfibre release to water, via laundering, and to air, via everyday use: a comparison between polyester clothing with differing textile parameters. Environ Sci Technol. 2020;54(6):3288–96. https://doi.org/10.1021/acs.est.9b06892.
Article
CAS
Google Scholar
Rochman CM. Microplastics research — from sink to source in freshwater systems. Science. 2018;360(6384):28–9. https://doi.org/10.1126/science.aar7734.
Article
CAS
Google Scholar
Yu Q, Hu X, Yang B, Zhang G, Wang J, Ling W. Distribution, abundance and risks of microplastics in the environment. Chemosphere. 2020;249:126059. https://doi.org/10.1016/j.chemosphere.2020.126059.
Article
CAS
Google Scholar
Ma H, Pu S, Liu S, Bai Y, Mandal S, Xing B. Microplastics in aquatic environments: toxicity to trigger ecological consequences. Environ Pollut. 2020;261:114089. https://doi.org/10.1016/j.envpol.2020.114089.
Article
CAS
Google Scholar
De Sá LC, Oliveira M, Ribeiro F, Rocha TL, Futter MN. Studies of the effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future? Sci Total Environ. 2018;645:1029–39. https://doi.org/10.1016/j.scitotenv.2018.07.207.
Article
CAS
Google Scholar
De Ruijter VN, Redondo-Hasselerharm PE, Gouin T, Koelmans AA. Quality criteria for microplastic effect studies in the context of risk assessment: a critical review. Environ Sci Technol. 2020;54(19):11692–705. https://doi.org/10.1021/acs.est.0c03057.
Article
CAS
Google Scholar
Selonen S, Dolar A, Jemec Kokalj A, Skalar T, Parramon Dolcet L, Hurley R, et al. Exploring the impacts of plastics in soil – the effects of polyester textile fibres on soil invertebrates. Sci Total Environ. 2020;700:134451. https://doi.org/10.1016/j.scitotenv.2019.134451.
Article
CAS
Google Scholar
EN ISO 6341, 2012. Water quality — determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) — acute toxicity test. International Organization for Standardization, Geneve.
Zimmermann L, Dierkes G, Ternes TA, Vö C, Wagner M. Benchmarking the in vitro toxicity and chemical composition of plastic consumer products. Environ Sci Technol. 2019;53(19):11467–77. https://doi.org/10.1021/acs.est.9b02293.
Article
CAS
Google Scholar
Groh KJ, Backhaus T, Carney-Almroth B, Geueke B, Inostroza PA, Lennquist A, et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ. 2019;651:3253–68. https://doi.org/10.1016/j.scitotenv.2018.10.015.
Article
CAS
Google Scholar
Carrero-Carralero C, Escobar-Arnanz J, Ros M, Jiménez-Falcao S, Sanz ML, Ramos L. An untargeted evaluation of the volatile and semi-volatile compounds migrating into food simulants from polypropylene food containers by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Talanta. 2019;195:800–6. https://doi.org/10.1016/j.talanta.2018.12.011.
Article
CAS
Google Scholar
Aerts O, Dendooven E, Foubert K, Stappers S, Ulicki M, Lambert J. Surgical mask dermatitis caused by formaldehyde (releasers) during the COVID-19 pandemic. Contact Dermatitis. 2020;83(2):172–3. https://doi.org/10.1111/cod.13626.
Article
CAS
Google Scholar
Jemec A, Horvat P, Kunej U, Bele M, Kržan A. Uptake and effects of microplastic textile fibres on freshwater crustacean Daphnia magna. Environ Pollut. 2016;219:201–9. https://doi.org/10.1016/j.envpol.2016.10.037.
Article
CAS
Google Scholar
Jemec Kokalj A, Horvat P, Skalar T, Kržan A. Plastic bag and facial cleanser derived microplastic do not affect feeding behaviour and energy reserves of terrestrial isopods. Sci Total Environ. 2018;615:761–6. https://doi.org/10.1016/j.scitotenv.2017.10.020.
Article
CAS
Google Scholar
Xu EG, Cheong RS, Liu L, Hernandez LM, Azimzada A, Bayen S, et al. Primary and secondary plastic particles exhibit limited acute toxicity but chronic effects on Daphnia magna. Environ Sci Technol. 2020;54(11):6859–68. https://doi.org/10.1021/acs.est.0c00245.
Article
CAS
Google Scholar
Schür C, Zipp S, Thalau T, Wagner M. Microplastics but not natural particles induce multigenerational effects in Daphnia magna. Environ Pollut. 2020;260:113904. https://doi.org/10.1016/j.envpol.2019.113904.
Article
CAS
Google Scholar
Kokalj AJ, Hartmann NB, Drobne D, Potthoff A, Kühnel D. Quality of nanoplastics and microplastics ecotoxicity studies: refining quality criteria for nanomaterial studies. J Hazard Mater. 2021;415:125751. https://doi.org/10.1016/j.jhazmat.2021.125751.
Article
CAS
Google Scholar
Lithner D, Nordensvan I, Dave G. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna. Environ Sci Pollut Res. 2012;19(5):1763–72. https://doi.org/10.1007/s11356-011-0663-5.
Article
CAS
Google Scholar
Li HX, Getzinger GJ, Ferguson PL, Orihuela B, Zhu M, Rittschof D. Effects of toxic leachate from commercial plastics on larval survival and settlement of the barnacle Amphibalanus amphitrite. Environ Sci Technol. 2016;50(2):924–31. https://doi.org/10.1021/acs.est.5b02781.
Article
CAS
Google Scholar
IL KJ, An YJ. Post COVID-19 pandemic: Biofragmentation and soil ecotoxicological effects of microplastics derived from face masks. J Hazard Mater. 2021;416:126169.
Article
Google Scholar
Au SY, Bruce TF, Bridges WC, Klaine SJ. Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ Toxicol Chem. 2015;34(11):2564–72. https://doi.org/10.1002/etc.3093.
Article
CAS
Google Scholar
Gray AD, Weinstein JE. Size- and shape-dependent effects of microplastic particles on adult daggerblade grass shrimp (Palaemonetes pugio). Environ Toxicol Chem. 2017;36(11):3074–80. https://doi.org/10.1002/etc.3881.
Article
CAS
Google Scholar
Duan Y, Xiong D, Wang Y, Zhang Z, Li H, Dong H, et al. Toxicological effects of microplastics in Litopenaeus vannamei as indicated by an integrated microbiome, proteomic and metabolomic approach. Sci Total Environ. 2021;761:143311. https://doi.org/10.1016/j.scitotenv.2020.143311.
Article
CAS
Google Scholar
Welden NAC, Cowie PR. Long-term microplastic retention causes reduced body condition in the langoustine, Nephrops norvegicus. Environ Pollut. 2016;218:895–900. https://doi.org/10.1016/j.envpol.2016.08.020.
Article
CAS
Google Scholar
Horn DA, Granek EF, Steele CL. Effects of environmentally relevant concentrations of microplastic fibres on Pacific mole crab (Emerita analoga) mortality and reproduction. Limnol Oceanogr Lett. 2020;5(1):74–83. https://doi.org/10.1002/lol2.10137.
Article
Google Scholar
Lei L, Wu S, Lu S, Liu M, Song Y, Fu Z, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci Total Environ. 2018;619–620:1–8. https://doi.org/10.1016/j.scitotenv.2017.11.103.
Article
CAS
Google Scholar
Kim SW, Waldman WR, Kim TY, Rillig MC. Effects of different microplastics on nematodes in the soil environment: tracking the extractable additives using an ecotoxicological approach. Environ Sci Technol. 2020;54(21):13868–78. https://doi.org/10.1021/acs.est.0c04641.
Article
CAS
Google Scholar
Revel M, Yakovenko N, Caley T, Guillet C, Châtel A, Mouneyrac C. Accumulation and immunotoxicity of microplastics in the estuarine worm Hediste diversicolor in environmentally relevant conditions of exposure. Environ Sci Pollut Res. 2020;27(4):3574–83. https://doi.org/10.1007/s11356-018-3497-6.
Article
CAS
Google Scholar
Revel M, Châtel A, Perrein-Ettajani H, Bruneau M, Akcha F, Sussarellu R, et al. Realistic environmental exposure to microplastics does not induce biological effects in the Pacific oyster Crassostrea gigas. Mar Pollut Bull. 2020;150:110627. https://doi.org/10.1016/j.marpolbul.2019.110627.
Article
CAS
Google Scholar
Revel M, Lagarde F, Perrein-Ettajani H, Bruneau M, Akcha F, Sussarellu R, et al. Tissue-specific biomarkeer responses in the blue mussel Mytilus spp. exposed to a mixture of microplastics at environmentally relevant concentrations. Front Environ Sci. 2019; doi:https://doi.org/10.3389/fenvs.2019.00033.
Phothakwanpracha J, Lirdwitayaprasit T, Pairohakul S. Effects of sizes and concentrations of different types of microplastics on bioaccumulation and lethality rate in the green mussel, Perna viridis. Mar Pollut Bull. 2021;173(Pt A):112954. https://doi.org/10.1016/j.marpolbul.2021.112954.
Article
CAS
Google Scholar
Tlili S, Jemai D, Brinis S, Regaya I. Microplastics mixture exposure at environmentally relevant conditions induce oxidative stress and neurotoxicity in the wedge clam Donax trunculus. Chemosphere. 2020;258:127344. https://doi.org/10.1016/j.chemosphere.2020.127344.
Article
CAS
Google Scholar
Khoironi A, Anggoro S. Evaluation of the interaction among microalgae Spirulina sp, plastics polyethylene terephthalate and polypropylene in freshwater environment. Ecological engineering. 2019; doi:https://doi.org/10.12911/22998993/108637.
Lagarde F, Olivier O, Zanella M, Daniel P, Hiard S, Caruso A. Microplastic interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ Pollut. 2016;215:331–9. https://doi.org/10.1016/j.envpol.2016.05.006.
Article
CAS
Google Scholar
Wu Y, Guo P, Zhang X, Zhang Y, Xie S, Deng J. Effect of microplastics exposure on the photosynthesis system of freshwater algae. J Hazard Mater. 2019;374:219–27. https://doi.org/10.1016/j.jhazmat.2019.04.039.
Article
CAS
Google Scholar
Miloloža M, Bule K, Ukić Š, Cvetnić M, Bolanča T, Kušić H, et al. Ecotoxicological determination of microplastic toxicity on algae Chlorella sp.: response surface modeling approach. Water Air Soil Pollut. 2022;232:1–16.
Google Scholar
Moreno GM, Cooper KR, Moreno GM, Cooper KR. Morphometric effects of various weathered and virgin/pure microplastics on sac fry zebrafish (Danio rerio). AIMS Environ Sci. 2021;8(3):204–20. https://doi.org/10.3934/environsci.2021014.
Article
CAS
Google Scholar
Zhao Y, Qiao R, Zhang S, Wang G. Metabolomic profiling reveals the intestinal toxicity of different length of microplastic fibres on zebrafish (Danio rerio). J Hazard Mater. 2021;403:123663. https://doi.org/10.1016/j.jhazmat.2020.123663.
Article
CAS
Google Scholar
Sheng C, Zhang S, Zhang Y. The influence of different polymer types of microplastics on adsorption, accumulation, and toxicity of triclosan in zebrafish. J Hazard Mater. 2021;402:123733. https://doi.org/10.1016/j.jhazmat.2020.123733.
Article
CAS
Google Scholar
Bucci K, Bikker J, Stevack K, Watson-Leung T, Rochman C. Impacts to larval fathead minnows vary between preconsumer and environmental microplastics. Environ Toxicol Chem 2021;00:0–1, DOI: https://doi.org/10.1002/etc.5036.
Montero D, Rimoldi S, Torrecillas S, Rapp J, Moroni F, Herrera A, et al. Impact of polypropylene microplastics and chemical pollutants on European sea bass (Dicentrarchus labrax) gut microbiota and health. Sci Total Environ. 2022;805:150402. https://doi.org/10.1016/j.scitotenv.2021.150402.
Article
CAS
Google Scholar
Cheng Y, Song W, Tian H, Zhang K, Li B, Du Z, et al. The effects of high-density polyethylene and polypropylene microplastics on the soil and earthworm Metaphire guillelmi gut microbiota. Chemosphere. 2021;267:129219. https://doi.org/10.1016/j.chemosphere.2020.129219.
Article
CAS
Google Scholar
Li B, Song W, Cheng Y, Zhang K, Tian H, Du Z, et al. Ecotoxicological effects of different size ranges of industrial-grade polyethylene and polypropylene microplastics on earthworms Eisenia fetida. Sci Total Environ. 2021;783:147007. https://doi.org/10.1016/j.scitotenv.2021.147007.
Article
CAS
Google Scholar
Zhou Y, Liu X, Wang J. Ecotoxicological effects of microplastics and cadmium on the earthworm Eisenia foetida. J Hazard Mater. 2020;392:122273. https://doi.org/10.1016/j.jhazmat.2020.122273.
Article
CAS
Google Scholar
Amorim MJ, Scott-Fordsmand JJ. Plastic pollution–a case study with Enchytraeus crypticus–from micro-to nanoplastics. Environ Pollut. 2021;271:116363. https://doi.org/10.1016/j.envpol.2020.116363.
Article
CAS
Google Scholar
Zhong Z, Nong W, Xie Y, Hui JHL, Chu LM. Long-term effect of plastic feeding on growth and transcriptomic response of mealworms (Tenebrio molitor L.). Chemosphere. 2022;287(Pt 1):132063. https://doi.org/10.1016/j.chemosphere.2021.132063.
Article
CAS
Google Scholar
Pignattelli S, Broccoli A, Renzi M. Physiological responses of garden cress (L. sativum) to different types of microplastics. Sci Total Environ. 2020;727:138609. https://doi.org/10.1016/j.scitotenv.2020.138609.
Article
CAS
Google Scholar
Colzi I, Renna L, Bianchi E, Castellani MB, Coppi A, Pignattelli S, et al. Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. J Hazard Mater. 2022;423(Pt B):127238. https://doi.org/10.1016/j.jhazmat.2021.127238.
Article
CAS
Google Scholar
Peng L, Fu D, Qi H, Lan C, Yu H, Environment CG-S Of the T, et al. Micro-and nano-plastics in marine environment: source, distribution and threats—a review. Sci Total Environ. 2020;698:134254. https://doi.org/10.1016/j.scitotenv.2019.134254.
Article
CAS
Google Scholar
Science Advice for Policy by European Academies (SAPEA). https://doi.org/10.26356/microplastics. Accessed 1 July 2021.
Maity S, Pramanick K. Perspectives and challenges of micro/nanoplastics-induced toxicity with special reference to phytotoxicity. Glob Change Biol. 2020;26(6):3241–50. https://doi.org/10.1111/gcb.15074.
Article
Google Scholar
PlasticsEurope. https://www.plasticseurope.org/en. Accessed 1 July 2021.
Statista. https://www.statista.com/statistics/1103529/global-polypropylene-production/. Accessed 1 July 2021.
Xu S, Ma J, Ji R, Pan K, Miao AJ. Microplastics in aquatic environments: occurrence, accumulation, and biological effects. Sci Total Environ. 2020;703:134699. https://doi.org/10.1016/j.scitotenv.2019.134699.
Article
CAS
Google Scholar
Rochman CM, Brookson C, Bikker J, Djuric N, Earn A, Bucci K, et al. Rethinking microplastics as a diverse contaminant suite. Environ Toxicol Chem. 2019;38(4):703–11. https://doi.org/10.1002/etc.4371.
Article
CAS
Google Scholar
Ter Halle A, Ladirat L, Gendre X, Goudouneche D, Pusineri C, Routaboul C, et al. Understanding the fragmentation pattern of marine plastic debris. Environ Sci Technol. 2016;50(11):5668–75. https://doi.org/10.1021/acs.est.6b00594.
Article
CAS
Google Scholar
Wang Q, Zhang Y, Wangjin X, Wang Y, Meng G, Chen Y. The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. J Environ Sci. 2020;87:272–80. https://doi.org/10.1016/j.jes.2019.07.006.
Article
Google Scholar
Jemec Kokalj A, Kuehnel D, Puntar B, Žgajnar Gotvajn A, Kalčikova G. An exploratory ecotoxicity study of primary microplastics versus aged in natural waters and wastewaters. Environ Pollut. 2019;254(Pt A):112980. https://doi.org/10.1016/j.envpol.2019.112980.
Article
CAS
Google Scholar
Kalčíková G, Skalar T, Marolt G, Jemec KA. An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms. Water Res. 2020;175:115644. https://doi.org/10.1016/j.watres.2020.115644.
Article
CAS
Google Scholar
Liang W, Xu Y, Li X, Wang XX, Di Zhang H, Yu M, et al. Transparent polyurethane nanofibre air filter for high-efficiency PM2.5 capture. Nanoscale Res Lett. 2019;14:1–9.
Article
Google Scholar
Liu F, Li M, Shao W, Yue W, Hu B, Weng K, et al. Preparation of a polyurethane electret nanofibre membrane and its air-filtration performance. J Colloid Interface Sci. 2019;557:318–27. https://doi.org/10.1016/j.jcis.2019.08.099.
Article
CAS
Google Scholar
Zhang Y, Yuan S, Feng X, Li H, Zhou J, Wang B. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control. J Am Chem Soc. 2016;138(18):5785–8. https://doi.org/10.1021/jacs.6b02553.
Article
CAS
Google Scholar
Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013;87(7):1181–200. https://doi.org/10.1007/s00204-013-1079-4.
Article
CAS
Google Scholar