Battye W, Aneja VP, Schlesinger WH. Is nitrogen the next carbon? Earths Future. 2017;5(9):894–904. https://doi.org/10.1002/2017EF000592.
Article
Google Scholar
Lu M, Yang YH, Luo YQ, Fang CM, Zhou XH, Chen JK, Yang X, Li B. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytol. 2011;189(4):1040–50. https://doi.org/10.1111/j.1469-8137.2010.03563.x.
Article
CAS
Google Scholar
Erisman JW, Galloway JN, Seitzinger S, Bleeker A, Dise NB, AMR P, et al. Consequences of human modification of the global nitrogen cycle. Philos Trans R Soc B Biol Sci. 2013;368:20130116. https://doi.org/10.1098/rstb.2013.0116.
Fowler D, Pyle JA, Raven JA, Sutton MA. The global nitrogen cycle in the twenty-first century: introduction. Philos Trans R Soc B Biol Sci. 2013;368:20130164. https://doi.org/10.1098/rstb.2013.0164.
Houlton BZ, Almaraz M, Aneja V, Austin AT, Bai E, Cassman KG, Compton JE, Davidson EA, Erisman JW, Galloway JN, Gu B, Yao G, Martinelli LA, Scow K, Schlesinger WH, Tomich TP, Wang C, Zhang X. A world of Cobenefits: solving the global nitrogen challenge. Earths Future. 2019;7(8):865–72. https://doi.org/10.1029/2019EF001222.
Article
Google Scholar
Bodirsky BL, Popp A, Lotze-Campen H, Dietrich JP, Rolinski S, Weindl I, Schmitz C, Müller C, Bonsch M, Humpenöder F, Biewald A, Stevanovic M. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat Commun. 2014;5(1). https://doi.org/10.1038/ncomms4858.
Frank S, Havlik P, Stehfest E, van Meijl H, Witzke P, Perez-Dominguez I, et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 degrees C target. Nat Clim Chang. 2019;9(1):66–72. https://doi.org/10.1038/s41558-018-0358-8.
Article
CAS
Google Scholar
Shcherbak I, Millar N, Robertson GP. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci U S A. 2014;111(25):9199–204. https://doi.org/10.1073/pnas.1322434111.
Article
CAS
Google Scholar
Thompson RL, Lassaletta L, Patra PK, Wilson C, Wells KC, Gressent A, Koffi EN, Chipperfield MP, Winiwarter W, Davidson EA, Tian H, Canadell JG. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat Clim Chang. 2019;9(12):993–8. https://doi.org/10.1038/s41558-019-0613-7.
Article
CAS
Google Scholar
Castellano MJ, Kaye JP, Lin H, Schmidt JP. Linking carbon saturation concepts to nitrogen saturation and retention. Ecosystems. 2012;15(2):175–87. https://doi.org/10.1007/s10021-011-9501-3.
Article
CAS
Google Scholar
Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc B Biol Sci. 2013;368:20130122. https://doi.org/10.1098/rstb.2013.0122.
Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P. Climate-smart soils. Nature. 2016;532(7597):49–57. https://doi.org/10.1038/nature17174.
Article
CAS
Google Scholar
Wollenberg E, Richards M, Smith P, Havlik P, Obersteiner M, Tubiello FN, et al. Reducing emissions from agriculture to meet the 2 degrees C target. Glob Chang Biol. 2016;22(12):3859–64. https://doi.org/10.1111/gcb.13340.
Article
Google Scholar
Rillig MC, Lehmann A. Microplastic in terrestrial ecosystems. Science. 2020;368(6498):1430–1. https://doi.org/10.1126/science.abb5979.
Article
CAS
Google Scholar
Bucci K, Tulio M, Rochman CM. What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review. Ecol Appl. 2020;30(2):e02044. https://doi.org/10.1002/eap.2044.
Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ. 2017;586:127–41. https://doi.org/10.1016/j.scitotenv.2017.01.190.
Article
CAS
Google Scholar
Machado AAD, Kloas W, Zarfl C, Hempel S, Rillig MC. Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol. 2018;24(4):1405–16. https://doi.org/10.1111/gcb.14020.
Article
Google Scholar
Xu BL, Liu F, Cryder Z, Huang D, Lu ZJ, He Y, Wang H, Lu Z, Brookes PC, Tang C, Gan J, Xu J. Microplastics in the soil environment: occurrence, risks, interactions and fate - a review. Crit Rev Environ Sci Technol. 2020;50(21):2175–222. https://doi.org/10.1080/10643389.2019.1694822.
Article
CAS
Google Scholar
Rillig MC. Microplastic in terrestrial ecosystems and the soil? Environ Sci Technol. 2012;46(12):6453–4. https://doi.org/10.1021/es302011r.
Article
CAS
Google Scholar
Allen S, Allen D, Phoenix VR, Le Roux G, Durántez Jiménez P, Simonneau A, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci. 2019;12(5):339–44. https://doi.org/10.1038/s41561-019-0335-5.
Article
CAS
Google Scholar
Dris R, Gasperi J, Saad M, Mirande C, Tassin B. Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Mar Pollut Bull. 2016;104(1):290–3. https://doi.org/10.1016/j.marpolbul.2016.01.006.
Article
CAS
Google Scholar
Rillig MC, Ingraffia R, Machado AAD. Microplastic incorporation into soil in Agroecosystems. Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.01805.
Awet TT, Kohl Y, Meier F, Straskraba S, Grun AL, Ruf T, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environ Sci Eur. 2018;30(1):11. https://doi.org/10.1186/s12302-018-0140-6.
Article
CAS
Google Scholar
Chen HP, Wang YH, Sun X, Peng YK, Xiao L. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere. 2020;243:125271. https://doi.org/10.1016/j.chemosphere.2019.125271.
Article
CAS
Google Scholar
Yang XM, Bento CPM, Chen H, Zhang HM, Xue S, Lwanga EH, Zomer P, Ritsema CJ, Geissen V. Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil. Environ Pollut. 2018;242:338–47. https://doi.org/10.1016/j.envpol.2018.07.006.
Article
CAS
Google Scholar
Machado AAD, Lau CW, Till J, Kloas W, Lehmann A, Becker R, et al. Impacts of microplastics on the soil biophysical environment. Environ Sci Technol. 2018;52(17):9656–65. https://doi.org/10.1021/acs.est.8b02212.
Article
CAS
Google Scholar
Lwanga EH, Gertsen H, Gooren H, Peters P, Salanki T, van der Ploeg M, et al. Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ Sci Technol. 2016;50(5):2685–91. https://doi.org/10.1021/acs.est.5b05478.
Article
CAS
Google Scholar
Ren XW, Tang JC, Liu XM, Liu QL. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environ Pollut. 2020;256:113347. https://doi.org/10.1016/j.envpol.2019.113347.
Article
CAS
Google Scholar
Lozano YM, Rillig MC. Effects of microplastic fibers and drought on plant communities. Environ Sci Technol. 2020; 54(10):6166-73. https://doi.org/10.1021/acs.est.0c01051.
Machado AAD, Lau CW, Kloas W, Bergmann J, Bacheher JB, Faltin E, et al. Microplastics can change soil properties and affect plant performance. Environ Sci Technol. 2019;53(10):6044–52. https://doi.org/10.1021/acs.est.9b01339.
Article
CAS
Google Scholar
Rillig MC, Lehmann A, Machado AAD, Yang G. Microplastic effects on plants. New Phytol. 2019;223(3):1066–70. https://doi.org/10.1111/nph.15794.
Article
Google Scholar
van Kleunen M, Brumer A, Gutbrod L, Zhang Z. A microplastic used as infill material in artificial sport turfs reduces plant growth. Plants People Planet. 2019;2:157–66.
Article
Google Scholar
Balaine N, Clough TJ, Beare MH, Thomas SM, Meenken ED. Soil gas diffusivity controls N2O and N2 emissions and their ratio. Soil Sci Soc Am J. 2016;80(3):529–40. https://doi.org/10.2136/sssaj2015.09.0350.
Article
CAS
Google Scholar
Ball BC. Soil structure and greenhouse gas emissions: a synthesis of 20 years of experimentation. Eur J Soil Sci. 2013;64(3):357–73. https://doi.org/10.1111/ejss.12013.
Article
CAS
Google Scholar
Bocking CR, Blyth MG. Oxygen uptake and denitrification in soil aggregates. Acta Mech. 2018;229(2):595–612. https://doi.org/10.1007/s00707-017-2042-x.
Article
Google Scholar
Cardenas LM, Bol R, Lewicka-Szczebak D, Gregory AS, Matthews GP, Whalley WR, Misselbrook TH, Scholefield D, Well R. Effect of soil saturation on denitrification in a grassland soil. Biogeosciences. 2017;14(20):4691–710. https://doi.org/10.5194/bg-14-4691-2017.
Article
CAS
Google Scholar
Chamindu Deepagoda TKK, Jayarathne JRRN, Clough TJ, Thomas S, Elberling B. Soil-gas diffusivity and soil-moisture effects on N2O emissions from intact pasture soils. Soil Sci Soc Am J. 2019;83(4):1032–43. https://doi.org/10.2136/sssaj2018.10.0405.
Article
CAS
Google Scholar
Laudone GM, Matthews GP, Bird NRA, Whalley WR, Cardenas LM, Gregory AS. A model to predict the effects of soil structure on denitrification and N2O emission. J Hydrol. 2011;409(1–2):283–90. https://doi.org/10.1016/j.jhydrol.2011.08.026.
Article
CAS
Google Scholar
Schluter S, Zawallich J, Vogel HJ, Dorsch P. Physical constraints for respiration in microbial hotspots in soil and their importance for denitrification. Biogeosciences. 2019;16(18):3665–78. https://doi.org/10.5194/bg-16-3665-2019.
Article
CAS
Google Scholar
Smith KA. Changing views of nitrous oxide emissions from agricultural soil: key controlling processes and assessment at different spatial scales. Eur J Soil Sci. 2017;68(2):137–55. https://doi.org/10.1111/ejss.12409.
Article
CAS
Google Scholar
Wu D, Cárdenas LM, Calvet S, Brüggemann N, Loick N, Liu S, Bol R. The effect of nitrification inhibitor on N2O, NO and N2 emissions under different soil moisture levels in a permanent grassland soil. Soil Biol Biochem. 2017;113:153–60. https://doi.org/10.1016/j.soilbio.2017.06.007.
Article
CAS
Google Scholar
Bollmann A, Conrad R. Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Glob Chang Biol. 1998;4(4):387–96. https://doi.org/10.1046/j.1365-2486.1998.00161.x.
Article
Google Scholar
Parkin TB, Tiedje JM. Application of a soil core method to investigate the effect of oxygen concentration on denitification. Soil Biol Biochem. 1984;16(4):331–4. https://doi.org/10.1016/0038-0717(84)90027-0.
Article
CAS
Google Scholar
Reeves SH, Somasundaram J, Wang WJ, Heenan MA, Finn D, Dalai RC. Effect of soil aggregate size and long-term contrasting tillage, stubble and nitrogen management regimes on CO2 fluxes from a vertisol. Geoderma. 2019;337:1086–96. https://doi.org/10.1016/j.geoderma.2018.11.022.
Article
CAS
Google Scholar
Stepniewski W, Stepniewska Z. Selected oxygen-dependent process-response to soil management and tillage. Soil Tillage Res. 2009;102(2):193–200. https://doi.org/10.1016/j.still.2008.07.006.
Article
Google Scholar
Hoffmann M, Pohl M, Jurisch N, Prescher AK, Campa EM, Hagemann U, et al. Maize carbon dynamics are driven by soil erosion state and plant phenology rather than nitrogen fertilization form. Soil Tillage Res. 2018;175:255–66. https://doi.org/10.1016/j.still.2017.09.004.
Article
Google Scholar
Lehmann A, Fitschen K, Rillig MC. Abiotic and biotic factors influencing the effect of microplastic on soil aggregation. Soil Syst. 2019;3(1):21. https://doi.org/10.3390/soilsystems3010021.
Liang Y, Lehmann A, Ballhausen MB, Muller L, Rillig MC. Increasing temperature and microplastic fibers jointly influence soil aggregation by Saprobic fungi. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.02018.
Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, Iwasaki A, Roy J, Yang G. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science. 2019;366(6467):886–90. https://doi.org/10.1126/science.aay2832.
Article
CAS
Google Scholar
Rillig MC, Lehmann A, Ryo M, Bergmann J. Shaping up: toward considering the shape and form of pollutants. Environ Sci Technol. 2019;53(14):7925–6. https://doi.org/10.1021/acs.est.9b03520.
Article
CAS
Google Scholar
Livingston G, Hutchinson G. Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson P, Harriss R, editors. Biogenic trace gases: measuring emissions from soil and water. Oxford: Blackwell Science Inc; 1995. p. 14–51.
Google Scholar
Hoffmann M, Jurisch N, Alba JG, Borraz EA, Schmidt M, Huth V, et al. Detecting small-scale spatial heterogeneity and temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic chamber-derived C budgets and repeated soil inventories. Biogeosciences. 2017;14(4):1003–19. https://doi.org/10.5194/bg-14-1003-2017.
Article
CAS
Google Scholar
Umwelt-Geräte-Technik-GmbH. Users’s Manual PL 300. Müncheberg, Freising, Homecourt. 2014;18.
Gätke CR. Zum Einfluss des Bodenwassergehalts auf dei pneumatische Leitfähigkeit eines Sandbodens. Archiv Acker Pflanzenbau Bodenkunde. 1989;33(8):437–43.
Google Scholar
VDLUFA. Methodenbuch I. Die Untersuchung von Böden (Handbook: Soil Analysis). 1. Darmstadt (Germany) 1991.
Kemper WD, Rosenau RC. Aggregate stability and size distribution. In: Lute A, editor. Methods of soil analysis part I - physical and mineralogical methods. 2nd ed. Madison, USA: SSSA; 1986. p. 425–43.
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC. nlme: Linear and Nonlinear Mixed Effects Models. R package version 31–149. 2020.
Chen RR, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin XG, Blagodatskaya E, Kuzyakov Y. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Glob Chang Biol. 2014;20(7):2356–67. https://doi.org/10.1111/gcb.12475.
Article
Google Scholar
Jenkinson DS, Fox RH, Rayner JH. Interactions between fertilizer nitrogen and soil-nitrogen - the so-called priming effect. J Soil Sci. 1985;36(3):425–44. https://doi.org/10.1111/j.1365-2389.1985.tb00348.x.
Article
CAS
Google Scholar
Balaine N, Clough TJ, Beare MH, Thomas SM, Meenken ED, Ross JG. Changes in relative gas diffusivity explain soil nitrous oxide flux dynamics. Soil Sci Soc Am J. 2013;77(5):1496–505. https://doi.org/10.2136/sssaj2013.04.0141.
Article
CAS
Google Scholar
Schjonning P, Pulido-Moncada M, Munkholm LJ, Iversen BV. Ratio of non-Darcian to Darcian air permeability as a marker of soil pore organization. Soil Sci Soc Am J. 2019;83(4):1024–31. https://doi.org/10.2136/sssaj2018.11.0452.
Article
CAS
Google Scholar
Linn DM, Doran JW. Effect of water-filled pore-space on carbon-dioxide and nitrous-oxide production in tilled and nontolled soils. Soil Sci Soc Am J. 1984;48(6):1267–72. https://doi.org/10.2136/sssaj1984.03615995004800060013x.
Article
CAS
Google Scholar
Hallin S, Philippot L, Loffler FE, Sanford RA, Jones CM. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 2018;26(1):43–55. https://doi.org/10.1016/j.tim.2017.07.003.
Article
CAS
Google Scholar
Hu HW, Chen D, He JZ. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol Rev. 2015;39(5):729–49. https://doi.org/10.1093/femsre/fuv021.
Article
CAS
Google Scholar
Bateman EJ, Baggs EM. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils. 2005;41(6):379–88. https://doi.org/10.1007/s00374-005-0858-3.
Article
CAS
Google Scholar
Davidson EA, Swank WT, Perry TO. Distinguishing between nitrification and denitification as sources of gaseous nitrogen-production in soil. Appl Environ Microbiol. 1986;52(6):1280–6. https://doi.org/10.1128/AEM.52.6.1280-1286.1986.
Article
CAS
Google Scholar
Well R, Kurganova I, de Gerenyu VL, Flessa H. Isotopomer signatures of soil-emitted N2O under different moisture conditions - a microcosm study with arable loess soil. Soil Biol Biochem. 2006;38(9):2923–33. https://doi.org/10.1016/j.soilbio.2006.05.003.
Article
CAS
Google Scholar
Cardenas LM, Hawkins JMB, Chadwick D, Scholefield D. Biogenic gas emissions from soils measured using a new automated laboratory incubation system. Soil Biol Biochem. 2003;35(6):867–70. https://doi.org/10.1016/S0038-0717(03)00092-0.
Article
CAS
Google Scholar
Christiansen JR, Outhwaite J, Smukler SM. Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography. Agric For Meteorol. 2015;211:48–57.
Article
Google Scholar
Fuchs K, Hortnagl L, Buchmann N, Eugster W, Snow V, Merbold L. Management matters: testing a mitigation strategy for nitrous oxide emissions using legumes on intensively managed grassland. Biogeosciences. 2018;15(18):5519–43. https://doi.org/10.5194/bg-15-5519-2018.
Article
CAS
Google Scholar
Hawthorne I, Johnson MS, Jassal RS, Black TA, Grant NJ, Smukler SM. Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil. J Environ Manag. 2017;192:203–14. https://doi.org/10.1016/j.jenvman.2016.12.066.
Article
CAS
Google Scholar
Scheer C, Rowlings D, Firrell M, Deuter P, Morris S, Riches D, Porter I, Grace P. Nitrification inhibitors can increase post-harvest nitrous oxide emissions in an intensive vegetable production system. Sci Rep. 2017;7(1). https://doi.org/10.1038/srep43677.
Abalos D, van Groenigen JW, De Deyn GB. What plant functional traits can reduce nitrous oxide emissions from intensively managed grasslands? Glob Chang Biol. 2018;24(1):E248–E58. https://doi.org/10.1111/gcb.13827.
Article
Google Scholar
Abalos D, van Groenigen JW, Philippot L, Lubbers IM, De Deyn GB. Plant trait-based approaches to improve nitrogen cycling in agroecosystems. J Appl Ecol. 2019;56(11):2454–66. https://doi.org/10.1111/1365-2664.13489.
Article
Google Scholar
Jilling A, Keiluweit M, Contosta AR, Frey S, Schimel J, Schnecker J, Smith RG, Tiemann L, Grandy AS. Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry. 2018;139(2):103–22. https://doi.org/10.1007/s10533-018-0459-5.
Article
CAS
Google Scholar
Moreau D, Bardgett RD, Finlay RD, Jones DL, Philippot L. A plant perspective on nitrogen cycling in the rhizosphere. Funct Ecol. 2019;33(4):540–52. https://doi.org/10.1111/1365-2435.13303.
Article
Google Scholar
Norton J, Ouyang Y. Controls and adaptive Management of Nitrification in agricultural soils. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.01931.
Zimmermann L, Dierkes G, Ternes TA, Volker C, Wagner M. Benchmarking the in vitro toxicity and chemical composition of plastic consumer products. Environ Sci Technol. 2019;53(19):11467–77. https://doi.org/10.1021/acs.est.9b02293.
Article
CAS
Google Scholar
Wan Y, Wu CX, Xue Q, Hui XMN. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci Total Environ. 2019;654:576–82. https://doi.org/10.1016/j.scitotenv.2018.11.123.
Article
CAS
Google Scholar