Lebreton L, Slat B, Ferrari F, Sainte-Rose B, Aitken J, Marthouse R, et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci Rep. 2018;8(1):4666.
Article
CAS
Google Scholar
Lindeque PK, Cole M, Coppock RL, Lewis CN, Miller RZ, Watts AJR, et al. Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size. Environ Pollut. 2020;265:114721.
Article
CAS
Google Scholar
California State Water Resources Control Board (CSWRCB). Adoption of Definition of ‘Microplastics in Drinking Water’. Resolution No. 2020–0021. https://www.waterboards.ca.gov/board_decisions/adopted_orders/resolutions/2020/rs2020_0021.pdf.
Groh KJ, Backhaus T, Carney-Almroth B, Geueke B, Inostroza PA, Lennquist A, et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ. 2019;651:3253–68.
Article
CAS
Google Scholar
Rochman CM, Brookson C, Bikker J, Djuric N, Earn A, Bucci K, et al. Rethinking microplastics as a diverse contaminant suite. Environ Toxicol Chem. 2019;38(4):703–11.
Article
CAS
Google Scholar
Brahney J, Mahowald N, Prank M, Cornwell G, Klimont Z, Matsui H, et al. Constraining the atmospheric limb of the plastic cycle. Proc Natl Acad Sci USA. 2021;118(16):e2020719118.
Article
CAS
Google Scholar
Horton AA, Dixon SJ. Microplastics: an introduction to environmental transport processes. WIREs Water. 2018;5(2):e1268.
Article
Google Scholar
Gouin T. Toward an improved understanding of the ingestion and trophic transfer of microplastic particles: critical review and implications for future research. Environ Toxicol Chem. 2020;39(6):1119–37.
Article
CAS
Google Scholar
Brennecke D, Ferreira EC, Costa TMM, Appel D, da Gama BAP, Lenz M. Ingested microplastics (>100 μm) are translocated to organs of the tropical fiddler crab Uca rapax. Mar Pollut Bull. 2015;96(1–2):491–5.
Article
CAS
Google Scholar
Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol. 2008;42(13):5026–31.
Article
CAS
Google Scholar
Bucci K, Tulio M, Rochman CM. What is known and unknown about the effects of plastic pollution: a meta-analysis and systematic review. Ecol Appl. 2020;30(2):e02044.
Article
CAS
Google Scholar
Napper IE, Thompson RC. Plastic debris in the marine environment: history and future challenges. Global Chall. 2020;4(6):1900081.
Article
Google Scholar
Environment and Climate Change Canada, Health Canada. Science assessment of plastic pollution. 2020.
European Chemicals Agency (ECHA). Annex XV Restriction Report, Proposal for a restriction of intentionally added microplastics. Version 1.2. 2019.
Google Scholar
Parliament. House of Commons (2016). Environmental impact of microplastics. (HC 1979). House of Commons, Environmental Audit Committee. London.
California Ocean Protection Act. Public Resources Code. Sect. 35635 2018.
Jeong J, Choi J. Adverse outcome pathways potentially related to hazard identification of microplastics based on toxicity mechanisms. Chemosphere. 2019;231:249–55.
Article
CAS
Google Scholar
Koelmans AA, Redondo-Hasselerharm PE, Mohamed Nor NH, de Ruijter V, Mintenig SM, Kooi M. Risk assessment of microplastic particles. Nat Rev Mater. 2022;7:138–52.
Kooi M, Primpke S, Mintenig SM, Lorenz C, Gerdts G, Koelmans AA. Characterizing the multidimensionality of microplastics across environmental compartments. Water Res. 2021;202:117429.
Article
CAS
Google Scholar
Mehinto AC, Coffin S, Koelmans A, Brander SM, Wagner M, Hampton L, et al. Risk-based management framework for microplastics in aquatic ecosystems. Microplastics and Nanoplastics. 2022;2(17).
de Ruijter VN, Redondo-Hasselerharm PE, Gouin T, Koelmans AA. Quality criteria for microplastic effect studies in the context of risk assessment: a critical review. Environ Sci Technol. 2020;54(19):11692–705.
Article
CAS
Google Scholar
Connors KA, Dyer SD, Belanger SE. Advancing the quality of environmental microplastic research. Environ Toxicol Chem. 2017;36(7):1697–703.
Article
CAS
Google Scholar
Hampton LMT, Lowman H, Coffin S, Darin E, De Frond H, Hermabessiere L, et al. A living tool for the continued exploration of microplastic toxicity. Microplastics and Nanoplastics. 2022;2(18).
Jebb AT, Parrigon S, Woo SE. Exploratory data analysis as a foundation of inductive research. Hum Resour Manag Rev. 2017;27(2):265–76.
Google Scholar
Burns EE, Boxall ABA. Microplastics in the aquatic environment: evidence for or against adverse impacts and major knowledge gaps. Environ Toxicol Chem. 2018;37(11):2776–96.
Article
CAS
Google Scholar
Covernton GA, Davies HL, Cox KD, El-Sabaawi R, Juanes F, Dudas SE, et al. A Bayesian analysis of the factors determining microplastics ingestion in fishes. J Hazard Mater. 2021;413:125405.
Article
CAS
Google Scholar
Ziajahromi S, Kumar A, Neale PA, Leusch FDL. Impact of Microplastic Beads and Fibers on Waterflea (Ceriodaphnia dubia) Survival, Growth, and Reproduction: Implications of Single and Mixture Exposures. Environ Sci Technol. 2017;51(22):13397–406.
Article
CAS
Google Scholar
Bucci K, Bikker J, Stevack K, Watson-Leung T, Rochman C. Impacts to Larval Fathead Minnows Vary between Preconsumer and Environmental Microplastics. Environ Toxicol Chem. 2021;41(4):58–868.
Zimmermann L, Göttlich S, Oehlmann J, Wagner M, Völker C. What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna. Environ Pollut. 2020;267:115392.
De Frond H, Thornton Hampton L, Kotar S, Gesulga K, Matuch C, Lao W, et al. Monitoring microplastics in drinking water: An interlaboratory study to inform effective methods for quantifying and characterizing microplastics. Chemosphere. 2022;298:134282.
Article
CAS
Google Scholar
Koelmans AA, Redondo-Hasselerharm PE, Mohamed Nor NH, Kooi M. Solving the nonalignment of methods and approaches used in microplastic research to consistently characterize risk. Environ Sci Technol. 2020;54(19):12307–15.
Article
CAS
Google Scholar
Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LC, Martens JA, et al. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology. 2009;260(1–3):142–9.
Article
CAS
Google Scholar
Schmid O, Stoeger T. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J Aerosol Sci. 2016;99:133–43.
Article
CAS
Google Scholar
Hampton LMT, Bouwmeester H, Brander S, Coffin S, Cole M, Hermabessiere L, et al. Research Recommendations to Better Understand the Potential Health Impacts of Microplastics to Humans and Aquatic Ecosystems. Microplastics and Nanoplastics. 2022;2(18).
Kooi M, Koelmans AA. Simplifying microplastic via continuous probability distributions for size, shape, and density. Environ Sci Technol Lett. 2019;6(9):551–7.
Article
CAS
Google Scholar
Qiao R, Deng Y, Zhang S, Wolosker MB, Zhu Q, Ren H, et al. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere. 2019;236:124334.
Article
CAS
Google Scholar
Sheng C, Zhang S, Zhang Y. The influence of different polymer types of microplastics on adsorption, accumulation, and toxicity of triclosan in zebrafish. J Hazard Mater. 2021;402:123733.
Article
CAS
Google Scholar
Xia B, Sui Q, Du Y, Wang L, Jing J, Zhu L, et al. Secondary PVC microplastics are more toxic than primary PVC microplastics to Oryzias melastigma embryos. J Hazard Mater. 2022;424:127421.
Article
CAS
Google Scholar
Zhao Y, Qiao R, Zhang S, Wang G. Metabolomic profiling reveals the intestinal toxicity of different length of microplastic fibers on zebrafish (Danio rerio). J Hazard Mater. 2021;403:123663.
Article
CAS
Google Scholar
Lithner D, Larsson Å, Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ. 2011;409(18):3309–24.
Article
CAS
Google Scholar
Yang T, Nowack B. A Meta-analysis of Ecotoxicological Hazard Data for Nanoplastics in Marine and Freshwater Systems. Environ Toxicol Chem. 2020;39(12):2588–98.
Article
CAS
Google Scholar
Danopoulos E, Twiddy M, West R, Rotchell JM. A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. J Hazard Mater. 2021;427:127861.
Article
CAS
Google Scholar
Cole M, Coppock R, Lindeque PK, Altin D, Reed S, Pond DW, et al. Effects of nylon microplastic on feeding, lipid accumulation, and moulting in a Coldwater copepod. Environ Sci Technol. 2019;53(12):7075–82.
Article
CAS
Google Scholar
Riediker M, Zink D, Kreyling W, Oberdörster G, Elder A, Graham U, et al. Particle toxicology and health - where are we? Part Fibre Toxicol. 2019;16(1):19.
Article
CAS
Google Scholar
McClellan RO. Setting ambient air quality standards for particulate matter. Toxicology. 2002;181–182:329–47.
Article
Google Scholar
Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 2008;27(9):1825–51.
Article
CAS
Google Scholar
Jeong CB, Kang HM, Lee MC, Kim DH, Han J, Hwang DS, et al. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Sci Rep. 2017;7:41323.
Article
CAS
Google Scholar
Yang H, Xiong H, Mi K, Xue W, Wei W, Zhang Y. Toxicity comparison of nano-sized and micron-sized microplastics to Goldfish Carassius auratus Larvae. J Hazard Mater. 2020;388:122058.
Article
CAS
Google Scholar
Gigault J, El Hadri H, Nguyen B, Grassl B, Rowenczyk L, Tufenkji N, et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat Nanotechnol. 2021;16(5):501–7.
Article
CAS
Google Scholar
Jâms IB, Windsor FM, Poudevigne-Durance T, Ormerod SJ, Durance I. Estimating the size distribution of plastics ingested by animals. Nat Commun. 2020;11(1):1594.
Article
CAS
Google Scholar
Powell JJ, Faria N, Thomas-McKay E, Pele LC. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun. 2010;34(3):J226–33.
Article
CAS
Google Scholar
Prüst M, Meijer J, Westerink RHS. The plastic brain: neurotoxicity of micro- and nanoplastics. Part Fibre Toxicol. 2020;17(1):24.
Article
CAS
Google Scholar
Capó X, Company JJ, Alomar C, Compa M, Sureda A, Grau A, et al. Long-term exposure to virgin and seawater exposed microplastic enriched-diet causes liver oxidative stress and inflammation in gilthead seabream Sparus aurata, Linnaeus 1758. Sci Total Environ. 2021;767:144976.
Article
CAS
Google Scholar
Saavedra J, Stoll S, Slaveykova VI. Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Environ Pollut. 2019;252:715–22.
Article
CAS
Google Scholar
De Sales-Ribeiro C, Brito-Casillas Y, Fernandez A, Caballero MJ. An end to the controversy over the microscopic detection and effects of pristine microplastics in fish organs. Sci Rep. 2020;10(1):12434.
Article
CAS
Google Scholar
Walkinshaw C, Lindeque PK, Thompson R, Tolhurst T, Cole M. Microplastics and seafood: lower trophic organisms at highest risk of contamination. Ecotoxicol Environ Saf. 2020;190:110066.
Article
CAS
Google Scholar
Wan Z, Wang C, Zhou J, Shen M, Wang X, Fu Z, et al. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere. 2019;217:646–58.
Article
CAS
Google Scholar
de Sá LC, Oliveira M, Ribeiro F, Rocha TL, Futter MN. Studies of the effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future? Sci Total Environ. 2018;645:1029–39.
Article
CAS
Google Scholar
Trestrail C, Walpitagama M, Miranda A, Nugegoda D, Shimeta J. Microplastics alter digestive enzyme activities in the marine bivalve, Mytilus galloprovincialis. Sci Total Environ. 2021;779:146418.
Article
CAS
Google Scholar
Wen B, Zhang N, Jin S-R, Chen Z-Z, Gao J-Z, Liu Y, et al. Microplastics have a more profound impact than elevated temperatures on the predatory performance, digestion and energy metabolism of an Amazonian cichlid. Aquat Toxicol. 2018;195:67–76.
Article
CAS
Google Scholar
Xu X-Y, Lee WT, Chan AKY, Lo HS, Shin PKS, Cheung SG. Microplastic ingestion reduces energy intake in the clam Atactodea striata. Mar Pollut Bull. 2017;124(2):798–802.
Article
CAS
Google Scholar
Athey SN, Albotra SD, Gordon CA, Monteleone B, Seaton P, Andrady AL, et al. Trophic transfer of microplastics in an estuarine food chain and the effects of a sorbed legacy pollutant. Limnol Oceanogr Letters. 2020;5(1):154–62.
Article
Google Scholar
Foley CJ, Feiner ZS, Malinich TD, Hook TO. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci Total Environ. 2018;631–632:550–9.
Article
CAS
Google Scholar
Jaikumar G, Baas J, Brun NR, Vijver MG, Bosker T. Acute sensitivity of three Cladoceran species to different types of microplastics in combination with thermal stress. Environ Pollut. 2018;239:733–40.
Article
CAS
Google Scholar
Stienbarger CD, Joseph J, Athey SN, Monteleone B, Andrady AL, Watanabe WO, et al. Direct ingestion, trophic transfer, and physiological effects of microplastics in the early life stages of Centropristis striata, a commercially and recreationally valuable fishery species. Environ Pollut. 2021;285:117653.
Article
CAS
Google Scholar
Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet MEJ, et al. Oyster reproduction is affected by exposure to polystyrene microplastics. PNAS. 2016;113(9):2430–5.
Article
CAS
Google Scholar
Wright SL, Rowe D, Thompson RC, Galloway TS. Microplastic ingestion decreases energy reserves in marine worms. Curr Biol. 2013;23(23):R1031–3.
Article
CAS
Google Scholar
Yin L, Chen B, Xia B, Shi X, Qu K. Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii). J Hazard Mater. 2018;360:97–105.
Article
CAS
Google Scholar
Amariei G, Rosal R, Fernández-Piñas F, Koelmans AA. Negative food dilution and positive biofilm carrier effects of microplastic ingestion by D. magna cause tipping points at the population level. Environ Pollut. 2022;294:118622.
Article
CAS
Google Scholar
Kong X, Koelmans AA. Modeling decreased resilience of shallow lake ecosystems toward eutrophication due to microplastic ingestion across the food web. Environ Sci Technol. 2019;53(23):13822–31.
Article
CAS
Google Scholar
Salerno M, Berlino M, Mangano MC, Sarà G. Microplastics and the functional traits of fishes: a global meta-analysis. Glob Change Biol. 2021;27(12):2645–55.
Article
CAS
Google Scholar
Gardon T, Huvet A, Paul-Pont I, Cassone A-L, Sham Koua M, Soyez C, et al. Toxic effects of leachates from plastic pearl-farming gear on embryo-larval development in the pearl oyster Pinctada margaritifera. Water Res. 2020;179:115890.
Article
CAS
Google Scholar
Bosker T, Olthof G, Vijver MG, Baas J, Barmentlo SH. Significant decline of Daphnia magna population biomass due to microplastic exposure. Environ Pollut. 2019;250:669–75.
Article
CAS
Google Scholar
Watts AJR, Urbina MA, Corr S, Lewis C, Galloway TS. Ingestion of plastic microfibers by the crab Carcinus maenas and its effect on food consumption and energy balance. Environ Sci Technol. 2015;49(24):14597–604.
Article
CAS
Google Scholar
EPA. Guidelines for the Culture of Fathead Minnows Pimephales Promelas for Use in Toxicity Tests. 1987.
Google Scholar
Fabra M, Williams L, Watts JEM, Hale MS, Couceiro F, Preston J. The plastic Trojan horse: biofilms increase microplastic uptake in marine filter feeders impacting microbial transfer and organism health. Sci Total Environ. 2021;797:149217.
Article
CAS
Google Scholar
Cui R, Kim SW, An YJ. Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean Daphnia galeata. Sci Rep. 2017;7(1):12095.
Article
CAS
Google Scholar
Roch S, Friedrich C, Brinker A. Uptake routes of microplastics in fishes: practical and theoretical approaches to test existing theories. Sci Rep. 2020;10(1):3896.
Article
CAS
Google Scholar
Pan C-G, Mintenig SM, Redondo-Hasselerharm PE, Neijenhuis PHMW, Yu K-F, Wang Y-H, et al. Automated μFTIR Imaging Demonstrates Taxon-Specific and Selective Uptake of Microplastic by Freshwater Invertebrates. Environ Sci Technol. 2021;55(14):9916–25.
Article
CAS
Google Scholar
Redondo-Hasselerharm PE, Falahudin D, Peeters ETHM, Koelmans AA. Microplastic effect thresholds for freshwater benthic macroinvertebrates. Environ Sci Technol. 2018;52(4):2278–86.
Article
CAS
Google Scholar
Hirt N, Body-Malapel M. Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature. Part Fibre Toxicol. 2020;17(1):57.
Article
Google Scholar
Collard F, Gasperi J, Gilbert B, Eppe G, Azimi S, Rocher V, et al. Anthropogenic particles in the stomach contents and liver of the freshwater fish Squalius cephalus. Sci Total Environ. 2018;643:1257–64.
Article
CAS
Google Scholar
Mattsson K, Johnson EV, Malmendal A, Linse S, Hansson L-A, Cedervall T. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci Rep. 2017;7(1):11452.
Article
CAS
Google Scholar
McIlwraith HK, Kim J, Helm P, Bhavsar SP, Metzger JS, Rochman CM. Evidence of Microplastic Translocation in Wild-Caught Fish and Implications for Microplastic Accumulation Dynamics in Food Webs. Environ Sci Technol. 2021;55(18):12372–82.
Article
CAS
Google Scholar
Chae Y, Kim D, Kim SW, An YJ. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Sci Rep. 2018;8(1):284.
Article
CAS
Google Scholar
von Moos N, Burkhardt-Holm P, Kohler A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol. 2012;46(20):11327–35.
Article
CAS
Google Scholar
Trestrail C, Nugegoda D, Shimeta J. Invertebrate responses to microplastic ingestion: reviewing the role of the antioxidant system. Sci Total Environ. 2020;734:138559.
Article
CAS
Google Scholar
Barboza LGA, Vieira LR, Branco V, Figueiredo N, Carvalho F, Carvalho C, et al. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat Toxicol. 2018;195:49–57.
Article
CAS
Google Scholar
Derakhshesh N, Salamat N, Movahedinia A, Hashemitabar M, Bayati V. Exposure of liver cell culture from the orange-spotted grouper, Epinephelus coioides, to benzo[a]pyrene and light results in oxidative damage as measured by antioxidant enzymes. Chemosphere. 2019;226:534–44.
Article
CAS
Google Scholar
Zhao T, Tan L, Huang W, Wang J. The interactions between micro polyvinyl chloride (mPVC) and marine dinoflagellate Karenia mikimotoi: The inhibition of growth, chlorophyll and photosynthetic efficiency. Environ Pollut. 2019;247:883–9.
Article
CAS
Google Scholar
Rahman A, Sarkar A, Yadav OP, Achari G, Slobodnik J. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: a scoping review. Sci Total Environ. 2021;757:143872.
Article
CAS
Google Scholar
Yu P, Liu Z, Wu D, Chen M, Lv W, Zhao Y. Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver. Aquat Toxicol. 2018;200:28–36.
Article
CAS
Google Scholar
Liu Y, Jia X, Zhu H, Zhang Q, He Y, Shen Y, et al. The effects of exposure to microplastics on grass carp (Ctenopharyngodon idella) at the physiological, biochemical, and transcriptomic levels. Chemosphere. 2022;286:131831.
Article
CAS
Google Scholar
Lusher AL, Hollman PCH, Mendoza-Hill JJ. Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety. Rome: FAO Fisheries and Aquaculture Technical Paper; 2017. No. 615.
Google Scholar
Cole M, Liddle C, Consolandi G, Drago C, Hird C, Lindeque PK, et al. Microplastics, microfibres and nanoplastics cause variable sub-lethal responses in mussels (Mytilus spp.). Mar Pollut Bull. 2020;160:111552.
Article
CAS
Google Scholar
Ding J, Huang Y, Liu S, Zhang S, Zou H, Wang Z, et al. Toxicological effects of nano- and micro-polystyrene plastics on red tilapia: are larger plastic particles more harmless? J Hazard Mater. 2020;396:122693.
Article
CAS
Google Scholar
Lei L, Wu S, Lu S, Liu M, Song Y, Fu Z, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci Total Environ. 2018;619–620:1–8.
Article
CAS
Google Scholar
Su L, Nan B, Hassell KL, Craig NJ, Pettigrove V. Microplastics biomonitoring in Australian urban wetlands using a common noxious fish (Gambusia holbrooki). Chemosphere. 2019;228:65–74.
Article
CAS
Google Scholar
Zitouni N, Bousserrhine N, Missawi O, Boughattas I, Chèvre N, Santos R, et al. Uptake, tissue distribution and toxicological effects of environmental microplastics in early juvenile fish Dicentrarchus labrax. J Hazard Mater. 2021;403:124055.
Article
CAS
Google Scholar