IPCS. International Programme on chemical safety risk assessment terminology. Part 1: IPCS/OECD key generic terms used in chemical Hazard/risk assessment. Part 2: IPCS glossary of key exposure assessment terminology. Geneva: World Health Organization; 2004.
Google Scholar
Hester RE, Harrison RM, editors. Chemicals in the environment: assessing and managing risk. Cambridge: The Royal Society of Chemistry; 2006.
Google Scholar
Fantke P, Chiu WA, Aylward L, Judson R, Huang L, Jang S, et al. Exposure and toxicity characterization of chemical emissions and chemicals in products: global recommendations and implementation in USEtox. Int J Life Cycle Assess. 2021;26(5):899–915. https://doi.org/10.1007/s11367-021-01889-y.
Article
CAS
Google Scholar
Matthies M, Solomon K, Vighi M, Gilman A, Tarazona JV. The origin and evolution of assessment criteria for persistent, bioaccumulative and toxic (PBT) chemicals and persistent organic pollutants (POPs). Environ Sci Process Impacts. 2016;18(9):1114–28. https://doi.org/10.1039/C6EM00311G.
Article
CAS
Google Scholar
Cowan-Ellsberry CE, McLachlan MS, Arnot JA, MacLeod M, McKone TE, Wania F. Modeling exposure to persistent Chemicals in Hazard and Risk Assessment. Integr Environ Assess Manage. 2009;5(4):662–79. https://doi.org/10.1897/IEAM_2008-084.1.
Article
CAS
Google Scholar
Scheringer M, Jones KC, Matthies M, Simonich SL, Van de Meent D. Multimedia partitioning, overall persistence, and long-range transport potential in the context of POPs and PBT chemical assessments. Integr Environ Assess Manage. 2009;5(4):557–76. https://doi.org/10.1897/IEAM_2009-007.1.
Article
CAS
Google Scholar
van Wijk D, Chenier R, Herny T, Hernando MD, Schulte C. Integrated approach to PBT and POP prioritization and risk assessment. Integr Environ Assess Manag. 2009;5(4):697–711. https://doi.org/10.1897/IEAM_2009-034.1.
Article
Google Scholar
Swackhammer DL, Needham LL, Powell DE, Muir DCG. Use of measurement data in evaluating exposure of humans and wildlife to POPs/PBTs. Integr Environ Assess Manag. 2009;5(4):638–61. https://doi.org/10.1897/IEAM_2008-094.1.
Article
Google Scholar
Boethling R, Fenner K, Howard P, Klecka G, Madsen T, Snape JR, et al. Environmental persistence of organic pollutants: guidance for development and review of POP risk profiles. Integr Environ Assess Manag. 2009;5(4):539–56. https://doi.org/10.1897/IEAM_2008-090.1.
Article
CAS
Google Scholar
Wania F, Mackay D. Global fractionation and cold condensation of low volatility organochlorine componds in polar regions. Ambio. 1993;22(1):10–8.
Google Scholar
Gouin T, Wania F. Time trends of Arctic contamination in relation to emission history and chemical persistence and partitioning properties. Environ Sci Technol. 2007;41(17):5986–92. https://doi.org/10.1021/es0709730.
Article
CAS
Google Scholar
Wania F. Assessing the potential of persistent organic Chemicals for Long-Range Transport and Accumulation in polar regions. Environ Sci Technol. 2003;37(7):1344–51. https://doi.org/10.1021/es026019e.
Article
CAS
Google Scholar
Wania F. Potential of degradable organic Chemicals for Absolute and Relative Enrichment in the Arctic. Environ Sci Technol. 2006;40(2):569–77. https://doi.org/10.1021/es051406k.
Article
CAS
Google Scholar
Wania F, Dugani CB. Assessing the long-range transport potential of polybrominated diphenyl ethers: a comparison of four multimedia models. Environ Toxicol Chem. 2003;22(6):1252–61. https://doi.org/10.1002/etc.5620220610.
Article
CAS
Google Scholar
Wania F, Mackay D. A global distribution model for persistent organic chemicals. Sci Total Environ. 1995;160/161:211–32.
Article
Google Scholar
Wania F, Mackay D, Li Y-F, Bidleman T, Strand A. Global chemical fate of α-hexachlorocyclohexane. 1. Evaluation of a global distribution model. Environ Toxicol Chem. 1999;18(7):1390–9. https://doi.org/10.1002/etc.5620180707.
Article
CAS
Google Scholar
Gouin T, Mackay D, Jones KC, Harner T, Meijer SN. Evidence for the “grasshopper” effect and fractionation during long-range atmospheric transport of organic contaminants. Environ Pollut. 2004;128(1–2):139–48. https://doi.org/10.1016/j.envpol.2003.08.025.
Article
CAS
Google Scholar
Klasmeier J, Matthies M, Macleod M, Fenner K, Scheringer M, Stroebe M, et al. Application of multimedia models for screening assessment of long-range transport potential and overall persistence. Environ Sci Technol. 2006;40(1):53–60. https://doi.org/10.1021/es0512024.
Article
CAS
Google Scholar
Beyer A, Mackay D, Matthies M, Wania F, Webster E. Assessing long-range transport potential of persistent organic pollutants. Environ Sci Technol. 2000;34(4):699–703. https://doi.org/10.1021/es990207w.
Article
CAS
Google Scholar
Bennett DH, McKone TE, Matthies M, Kastenberg WE. General formulation of characteristic travel distance for Semivolatile organic Chemicals in a Multimedia Environment. Environ Sci Technol. 1998;32(24):4023–30. https://doi.org/10.1021/es980328g.
Article
CAS
Google Scholar
Thompson RC, Moore CJ. Vom Saal FS, swan SH. Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond Ser B Biol Sci. 2009;364(1526):2153–66. https://doi.org/10.1098/rstb.2009.0053.
Article
CAS
Google Scholar
Barbosa F, Adeyemi JA, Bocato MZ, Comas A, Campiglia A. A critical viewpoint on current issues, limitations, and future research needs on micro- and nanoplastic studies: from the detection to the toxicological assessment. Environ Res. 2020;182:109089. https://doi.org/10.1016/j.envres.2019.109089.
Article
CAS
Google Scholar
Hardesty BD, Harari J, Isobe A, Lebreton L, Maximenko N, Potemra J, et al. Using numerical model simulations to improve the understanding of Micro-plastic distribution and pathways in the marine environment. Front Mar Sci. 2017;4:1–9. https://doi.org/10.3389/fmars.2017.00030.
Article
Google Scholar
Zarfl C, Matthies M. Are marine plastic particles transport vectors for organic pollutants to the Arctic? Mar Pollut Bull. 2010;60(10):1810–4. https://doi.org/10.1016/j.marpolbul.2010.05.026.
Article
CAS
Google Scholar
Bakir A, O'Connor IA, Rowland SJ, Hendriks AJ, Thompson RC. Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life. Environ Pollut. 2016;219:56–65. https://doi.org/10.1016/j.envpol.2016.09.046.
Article
CAS
Google Scholar
Gouin T, Roche N, Lohmann R, Hodges G. A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ Sci Technol. 2011;45(4):1466–72. https://doi.org/10.1021/es1032025.
Article
CAS
Google Scholar
Koelmans AA, Bakir A, Burton GA, Janssen CR. Microplastic as a vector for Chemicals in the Aquatic Environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol. 2016;50(7):3315–26. https://doi.org/10.1021/acs.est.5b06069.
Article
CAS
Google Scholar
Borrelle SB, Ringma J, Law KL, Monnahan CC, Lebreton L, McGivern A, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science. 2020;369(6510):1515–8. https://doi.org/10.1126/science.aba3656.
Article
CAS
Google Scholar
Lebreton LCM, van der Zwet J, Damsteeg JW, Slat B, Andrady A, Reisser J. River plastic emissions to the world's oceans. Nat Commun. 2017;8(1):15611. https://doi.org/10.1038/ncomms15611.
Article
CAS
Google Scholar
Lebreton L, Egger M, Slat B. A global mass budget for positively buoyant macroplastic debris in the ocean. Sci Rep. 2019;9(1):12922. https://doi.org/10.1038/s41598-019-49413-5.
Article
CAS
Google Scholar
Davison P, Asch RG. Plastic ingestion by mesopelagic fishes in the North Pacific subtropical gyre. Mar Ecol Prog Ser. 2011;432:173–80. https://doi.org/10.3354/meps09142.
Article
Google Scholar
de Haan WP, Sanchez-Vidal A, Canals M. Floating microplastics and aggregate formation in the Western Mediterranean Sea. Mar Pollut Bull. 2019;140:523–35. https://doi.org/10.1016/j.marpolbul.2019.01.053.
Article
CAS
Google Scholar
Jacquin J, Cheng J, Odobel C, Pandin C, Conan P, Pujo-Pay M, et al. Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the "Plastisphere". Front Microbiol. 2019;10:865. https://doi.org/10.3389/fmicb.2019.00865.
Article
Google Scholar
Kane IA, Clare MA, Miramontes E, Wogelius R, Rothwell JJ, Garreau P, et al. Seafloor microplastic hotspots controlled by deep-sea circulation. Science. 2020;368(6495):1140–5. https://doi.org/10.1126/science.aba5899.
Article
CAS
Google Scholar
Ourmieres Y, Mansui J, Molcard A, Galgani F, Poitou I. The boundary current role on the transport and stranding of floating marine litter: the French Riviera case. Cont Shelf Res. 2018;155:11–20. https://doi.org/10.1016/j.csr.2018.01.010.
Article
Google Scholar
Pabortsava K, Lampitt RS. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat Commun. 2020;11(1):4073. https://doi.org/10.1038/s41467-020-17932-9.
Article
CAS
Google Scholar
Ter Halle A, Ladirat L, Gendre X, Goudouneche D, Pusineri C, Routaboul C, et al. Understanding the fragmentation pattern of marine plastic debris. Environ Sci Technol. 2016;50(11):5668–75. https://doi.org/10.1021/acs.est.6b00594.
Article
CAS
Google Scholar
Woodall LC, Sanchez-Vidal A, Canals M, Paterson GL, Coppock R, Sleight V, et al. The deep sea is a major sink for microplastic debris. R Soc Open Sci. 2014;1(4):140317. https://doi.org/10.1098/rsos.140317.
Article
Google Scholar
Zhu L, Zhao S, Bittar TB, Stubbins A, Li D. Photochemical dissolution of buoyant microplastics to dissolved organic carbon: rates and microbial impacts. J Hazard Mater. 2020;383:121065. https://doi.org/10.1016/j.jhazmat.2019.121065.
Article
CAS
Google Scholar
Weiss L, Ludwig W, Heussner S, Canals M, Ghiglione JF, Estournel C, et al. The missing ocean plastic sink: gone with the rivers. Science. 2021;373(6550):107–11. https://doi.org/10.1126/science.abe0290.
Article
CAS
Google Scholar
Onink V, Jongedijk CE, Hoffman MJ, van Sebille E, Laufkötter C. Global simulations of marine plastic transport show plastic trapping in coastal zones. Environ Res Lett. 2021;16(6):064053. https://doi.org/10.1088/1748-9326/abecbd.
Article
CAS
Google Scholar
Schmaltz E, Melvin EC, Diana Z, Gunady EF, Rittschof D, Somarelli JA, et al. Plastic pollution solutions: emerging technologies to prevent and collectmarineplastic pollution. Environ Int. 2020;144:106067. https://doi.org/10.1016/j.envint.2020.106067.
Article
CAS
Google Scholar
Lau WWY, Shiran Y, Bailey RM, Cook E, Stuchtey MR, Koskella J, Velis CA, Godfrey L, Boucher J, Murphy MB, Thompson RC, Jankowska E, Castillo Castillo A, Pilditch TD, Dixon B, Koerselman L, Kosior E, Favoino E, Gutberlet J, Baulch S, Atreya ME, Fischer D, He KK, Petit MM, Sumaila UR, Neil E, Bernhofen MV, Lawrence K, Palardy JE. Evaluating scenarios toward zero plastic pollution. Science. 2020;369(6510):1455–61.
Article
CAS
Google Scholar
Gouin T, Becker RA, Collot AG, Davis JW, Howard B, Inawaka K, et al. Toward the development and application of an environmental risk assessment framework for microplastic. Environ Toxicol Chem. 2019;38(10):2087–100. https://doi.org/10.1002/etc.4529.
Article
CAS
Google Scholar
Strand KO, Huserbraten M, Dagestad KF, Mauritzen C, Grosvik BE, Nogueira LA, et al. Potential sources of marine plastic from survey beaches in the Arctic and Northeast Atlantic. Sci Total Environ. 2021;790:148009. https://doi.org/10.1016/j.scitotenv.2021.148009.
Article
CAS
Google Scholar
Dowarah K, Devipriya SP. Microplastic prevalence in the beaches of Puducherry, India and its correlation with fishing and tourism/recreational activities. Mar Pollut Bull. 2019;148:123–33. https://doi.org/10.1016/j.marpolbul.2019.07.066.
Article
CAS
Google Scholar
Suaria G, Perold V, Lee JR, Lebouard F, Aliani S, Ryan PG. Floating macro- and microplastics around the Southern Ocean: results from the Antarctic circumnavigation expedition. Environ Int. 2020;136:105494. https://doi.org/10.1016/j.envint.2020.105494.
Article
Google Scholar
Barnes DK, Walters A, Gonçalves L. Macroplastics at sea around Antarctica. Mar Environ Res. 2010;70(2):250–2. https://doi.org/10.1016/j.marenvres.2010.05.006.
Article
CAS
Google Scholar
Martinez E, Maamaatuaiahutapu K, Taillandier V. Floating marine debris surface drift: convergence and accumulation toward the South Pacific subtropical gyre. Mar Pollut Bull. 2009;58(9):1347–55. https://doi.org/10.1016/j.marpolbul.2009.04.022.
Article
CAS
Google Scholar
Waluda CM, Staniland IJ, Dunn MJ, Thorpe SE, Grilly E, Whitelaw M, et al. Thirty years of marine debris in the Southern Ocean: annual surveys of two island shores in the Scotia Sea. Environ Int. 2020;136:105460. https://doi.org/10.1016/j.envint.2020.105460.
Article
Google Scholar
Hammer J, Kraak MH, Parsons JR. Plastics in the marine environment: the dark side of a modern gift. Rev Environ Contam Toxicol. 2012;220:1–44. https://doi.org/10.1007/978-1-4614-3414-6_1.
Article
CAS
Google Scholar
Maximenko N, Corradi P, Law KL, Van Sebille E, Garaba SP, Lampitt RS, et al. Toward the integrated marine debris observing system. Front Mar Sci. 2019;6. https://doi.org/10.3389/fmars.2019.00447.
Gilman E, Musyl M, Suuronen P, Chaloupka M, Gorgin S, Wilson J, et al. Highest risk abandoned, lost and discarded fishing gear. Sci Rep. 2021;11(1):7195. https://doi.org/10.1038/s41598-021-86123-3.
Article
CAS
Google Scholar
Lusher AL, Tirelli V, O'Connor I, Officer R. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci Rep. 2015;5(1):14947. https://doi.org/10.1038/srep14947.
Article
CAS
Google Scholar
Ross PS, Chastain S, Vassilenko E, Etemadifar A, Zimmermann S, Quesnel SA, et al. Pervasive distribution of polyester fibres in the Arctic Ocean is driven by Atlantic inputs. Nat Commun. 2021;12(1):106. https://doi.org/10.1038/s41467-020-20347-1.
Article
CAS
Google Scholar
Dibke C, Fischer M, Scholz-Böttcher BM. Microplastic mass concentrations and distribution in German bight waters by pyrolysis-gas chromatography-mass spectrometry/Thermochemolysis reveal potential impact of marine coatings: do ships leave skid Marks? Environ Sci Technol. 2021;55(4):2285–95. https://doi.org/10.1021/acs.est.0c04522.
Article
CAS
Google Scholar
Michels J, Stippkugel A, Lenz M, Wirtz K, Engel A. Rapid aggregation of biofilm-covered microplastics with marine biogenic particles. Proc R Soc B. 2018;285:20181203. https://doi.org/10.1098/rspb.2018.1203.
Article
CAS
Google Scholar
Van Melkebeke M, Janssen CR, De Meester S. Characteristics and sinking behavior of typical microplastics including the potential effect of biofouling: implications for remediation. Environ Sci Technol. 2020;54(14):8668–80.
Article
Google Scholar
Wu N, Zhang Y, Li W, Wang J, Zhang X, He J, et al. Co-effects of biofouling and inorganic matters increased the density of environmental microplastics in the sediments of Bohai Bay coast. Sci Total Environ. 2020;717:134431. https://doi.org/10.1016/j.scitotenv.2019.134431.
Article
CAS
Google Scholar
Rogers KL, Carreres-Calabuig JA, Gorokhova E, Posth NR. Micro-by-micro interactions: how microorganisms influence the fate of marine microplastics. Limnol Oceanography Lett. 2020;5(1):18–36. https://doi.org/10.1002/lol2.10136.
Article
CAS
Google Scholar
Harris PT. The fate of microplastic in marine sedimentary environments: a review and synthesis. Mar Pollut Bull. 2020;158:111398. https://doi.org/10.1016/j.marpolbul.2020.111398.
Article
CAS
Google Scholar
Peng X, Chen M, Chen S, Dasgupta S, Xu H, Ta K, et al. Microplastics contaminate the deepest part of the world’s ocean. Geochemical Perspect Lett. 2018:1–5. https://doi.org/10.7185/geochemlet.1829.
Uddin S, Fowler SW, Uddin MF, Behbehani M, Naji A. A review of microplastic distribution in sediment profiles. Mar Pollut Bull. 2021;163:111973. https://doi.org/10.1016/j.marpolbul.2021.111973.
Article
CAS
Google Scholar
Otosaka S, Noriki S. REEs and Mn/Al ratio of settling particles: horizontal transport of particulate material in the northern Japan trench. Mar Chem. 2000;72(2–4):329–42. https://doi.org/10.1016/S0304-4203(00)00094-3.
Article
CAS
Google Scholar
Schröder K, Kossel E, Lenz M. Microplastic abundance in beach sediments of the Kiel Fjord, Western Baltic Sea. Environ Sci Pollut Res Int. 2021;28(21):26515–28.
Article
Google Scholar
Piehl S, Hauk R, Robbe E, Richter B, Kachholz F, Schilling J, et al. Combined approaches to predict microplastic emissions within an urbanized estuary (Warnow, southwestern Baltic Sea). Front Environ Sci. 2021;9. https://doi.org/10.3389/fenvs.2021.616765.
Schernewski G, Radtke H, Hauk R, Baresel C, Olshammar M, Osinski R, et al. Transport and behavior of microplastics emissions from urban sources in the Baltic Sea. Front Environ Sci. 2020;8. https://doi.org/10.3389/fenvs.2020.579361.
Hoellein TJ, Rochman CM. The “plastic cycle”: a watershed-scale model of plastic pools and fluxes. Front Ecol Environ. 2021;19(3):176–83. https://doi.org/10.1002/fee.2294.
Article
Google Scholar
Baptista Neto JA, de Carvalho DG, Medeiros K, Drabinski TL, de Melo GV, Silva RCO, et al. The impact of sediment dumping sites on the concentrations of microplastic in the inner continental shelf of Rio de Janeiro/Brazil. Mar Pollut Bull. 2019;149:110558. https://doi.org/10.1016/j.marpolbul.2019.110558.
Article
CAS
Google Scholar
Loughlin C, Marques Mendes AR, Morrison L, Morley A. The role of oceanographic processes and sedimentological settings on the deposition of microplastics in marine sediment: Icelandic waters. Mar Pollut Bull. 2021;164:111976. https://doi.org/10.1016/j.marpolbul.2021.111976.
Article
CAS
Google Scholar
Martin J, Lusher A, Thompson RC, Morley A. The deposition and accumulation of microplastics in marine sediments and bottom water from the Irish continental shelf. Sci Rep. 2017;7(1):10772. https://doi.org/10.1038/s41598-017-11079-2.
Article
CAS
Google Scholar
Pohl F, Eggenhuisen JT, Kane IA, Clare MA. Transport and Burial of Microplastics in Deep-Marine Sediments by Turbidity Currents. Environ Sci Technol. 2020;54(7):4180–9.
Article
Google Scholar
Zhao J, Ran W, Teng J, Liu Y, Liu H, Yin X, et al. Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China. Sci Total Environ. 2018;640–641:637–45.
Article
Google Scholar
Allen S, Allen D, Moss K, Le Roux G, Phoenix VR, Sonke JE. Examination of the ocean as a source for atmospheric microplastics. PLoS One. 2020;15(5):e0232746. https://doi.org/10.1371/journal.pone.0232746.
Article
CAS
Google Scholar
Allen S, Allen D, Phoenix VR, Le Roux G, Durántez Jiménez P, Simonneau A, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci. 2019;12(5):339–44. https://doi.org/10.1038/s41561-019-0335-5.
Article
CAS
Google Scholar
Brahney J, Hallerud M, Heim E, Hahnenberger M, Sukumaran S. Plastic rain in protected areas of the United States. Science. 2020;368(6496):1257–60. https://doi.org/10.1126/science.aaz5819.
Article
CAS
Google Scholar
Zhang Y, Gao T, Kang S, Sillanpää M. Importance of atmospheric transport for microplastics deposited in remote areas. Environ Pollut. 2019;254(Pt A):112953.
Article
CAS
Google Scholar
Bergmann M, Mutzel S, Primpke S, Tekman MB, Trachsel J, Gerdts G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci Adv. 2019;5(8):eaax1157.
Article
CAS
Google Scholar
Dris R, Gasperi J, Saad M, Mirande C, Tassin B. Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Mar Pollut Bull. 2016;104(1–2):290–3. https://doi.org/10.1016/j.marpolbul.2016.01.006.
Article
CAS
Google Scholar
Evangeliou N, Grythe H, Klimont Z, Heyes C, Eckhardt S, Lopez-Aparicio S, et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat Commun. 2020;11(1):3381. https://doi.org/10.1038/s41467-020-17201-9.
Article
CAS
Google Scholar
Wright SL, Levermore JM, Kelly FJ. Raman spectral imaging for the detection of inhalable microplastics in ambient particulate matter samples. Environ Sci Technol. 2019;53(15):8947–56. https://doi.org/10.1021/acs.est.8b06663.
Article
CAS
Google Scholar
Koelmans AA, Mohamed Nor NH, Hermsen E, Kooi M, Mintenig SM, De France J. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res. 2019;155:410–22. https://doi.org/10.1016/j.watres.2019.02.054.
Article
CAS
Google Scholar
Gouin T. Toward an improved understanding of the ingestion and trophic transfer of microplastic particles: critical review and implications for future research. Environ Toxicol Chem. 2020;39(6):1119–37. https://doi.org/10.1002/etc.4718.
Article
CAS
Google Scholar
Waldschläger K, Lechthaler S, Stauch G, Schüttrumpf H. The way of microplastic through the environment - application of the source-pathway-receptor model (review). Sci Total Environ. 2020;713:136584. https://doi.org/10.1016/j.scitotenv.2020.136584.
Article
CAS
Google Scholar
Besseling E, Quik JT, Sun M, Koelmans AA. Fate of nano- and microplastic in freshwater systems: A modeling study. Environ Pollut. 2017;220(Pt A):540–8.
Article
CAS
Google Scholar
Turrell WR. Estimating a regional budget of marine plastic litter in order to advise on marine management measures. Mar Pollut Bull. 2020;150:110725. https://doi.org/10.1016/j.marpolbul.2019.110725.
Article
CAS
Google Scholar
Scheringer M. Persistence and spatial range as endpoints of an exposure-based assessment of organic chemicals. Environ Sci Technol. 1996;30(5):1652–9. https://doi.org/10.1021/es9506418.
Article
CAS
Google Scholar
Scheringer M, Stroebe M, Wania F, Wegmann F, Hungerbuhler K. The effect of export to the deep sea on the long-range transport potential of persistent organic pollutants. Environ Sci Pollut Res Int. 2004;11(1):41–8. https://doi.org/10.1065/espr2003.11.176.
Article
CAS
Google Scholar
van Pul WAJ, de Leeuw FAAM, van Jaarsveld JA, van der Gaag MA, Sliggers CJ. The potential for long-range transboundary atmospheric transport. Chemosphere. 1998;37(1):113–41.
Article
Google Scholar
Mackay D, MacLeod M. Multimedia Environmental Models. Pract Periodical Hazard Toxic Radioactive Waste Manage. 2002;6(2):63–9. https://doi.org/10.1061/(ASCE)1090-025X(2002)6:2(63).
Article
CAS
Google Scholar
Koelmans AA, Kooi M, Law KL, van Sebille E. All is not lost: deriving a top-down mass budget of plastic at sea. Environ Res Lett. 2017;12:114028. https://doi.org/10.1088/1748-9326/aa9500.
Article
CAS
Google Scholar
Barnes DK, Galgani F, Thompson RC, Barlaz M. Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond Ser B Biol Sci. 2009;364(1526):1985–98. https://doi.org/10.1098/rstb.2008.0205.
Article
CAS
Google Scholar
Möller JN, Löder MGJ, Laforsch C. Finding microplastics in soils: a review of analytical methods. Environ Sci Technol. 2020;54(4):2078–90. https://doi.org/10.1021/acs.est.9b04618.
Article
CAS
Google Scholar
Yang L, Zhang Y, Kang S, Wang Z, Wu C. Microplastics in soil: a review on methods, occurrence, sources, and potential risk. Sci Total Environ. 2021;780:146546. https://doi.org/10.1016/j.scitotenv.2021.146546.
Article
CAS
Google Scholar
Wright SL, Gouin T, Koelmans AA, Scheuermann L. Development of screening criteria for microplastic particles in air and atmospheric deposition: critical review and applicability towards assessing human exposure. Microplastics Nanoplastics. 2021;1(1). https://doi.org/10.1186/s43591-021-00006-y.
Zantis LJ, Carroll EL, Nelms SE, Bosker T. Marine mammals and microplastics: a systematic review and call for standardisation. Environ Pollut. 2021;269:116142. https://doi.org/10.1016/j.envpol.2020.116142.
Article
CAS
Google Scholar
Adomat Y, Grischek T. Sampling and processing methods of microplastics in river sediments - a review. Sci Total Environ. 2021;758:143691. https://doi.org/10.1016/j.scitotenv.2020.143691.
Article
CAS
Google Scholar
van Mourik LM, Crum S, Martinez-Frances E, van Bavel B, Leslie HA, de Boer J, et al. Results of WEPAL-QUASIMEME/NORMANs first global interlaboratory study on microplastics reveal urgent need for harmonization. Sci Total Environ. 2021;772:145071. https://doi.org/10.1016/j.scitotenv.2021.145071.
Article
CAS
Google Scholar
Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782. https://doi.org/10.1126/sciadv.1700782.
Article
CAS
Google Scholar
Alexy P, Anklam E, Emans T, Furfari A, Galgani F, Hanke G, et al. Managing the analytical challenges related to micro- and nanoplastics in the environment and food: filling the knowledge gaps. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2020;37(1):1–10. https://doi.org/10.1080/19440049.2019.1673905.
Article
CAS
Google Scholar
Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater. 2018;344:179–99. https://doi.org/10.1016/j.jhazmat.2017.10.014.
Article
CAS
Google Scholar
Stevens MP. Polymer additives: Part I. Mechanical property modifiers J Chem Educ. 1993;70(6):444–8. https://doi.org/10.1021/ed070p444.
Article
CAS
Google Scholar
WHO. Microplastics in drinking-water. Geneva, Switzerland: World Health Organization; 2019.
Sperling LH. Introduction to physical polymer science. Hoboken: Wiley; 2006.
Google Scholar
Global demand for plasticizers continues to rise. Additives for Polymers. 2017;2017(10):10–1.
Wei X-F, Linde E, Hedenqvist MS. Plasticiser loss from plastic or rubber products through diffusion and evaporation. npj Mater Degradation. 2019;3:18. https://doi.org/10.1038/s41529-019-0080-7.
OECD. OECD Series on Emission Scenario Documents Number 38: Emission scenario document on plastic additives - Plastic additives during the use of end products. Paris: OECD Environment, Health and Safety Publications; 2019. Contract No.: ENV/JM/MONO(2019)10
Commission E. Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02011R0010-20190829; 2011.
Google Scholar
Liu JM, Li CY, Yang FE, Zhao N, Lv SW, Liu JC, et al. Assessment of migration regularity of phthalates from food packaging materials. Food Sci Nutr. 2020;8(10):5738–47. https://doi.org/10.1002/fsn3.1863.
Article
CAS
Google Scholar
Garcia Ibarra V. Rodriguez Bernaldo de Quiros a, Paseiro Losada P, Sendon R. identification of intentionally and non-intentionally added substances in plastic packaging materials and their migration into food products. Anal Bioanal Chem. 2018;410(16):3789–803. https://doi.org/10.1007/s00216-018-1058-y.
Article
CAS
Google Scholar
Huang L, Anastas N, Egeghy P, Vallero DA, Jolliet O, Bare J. Integrating exposure to chemicals in building materials during use stage. Int J Life Cycle Assess. 2019;24(6):1009–26. https://doi.org/10.1007/s11367-018-1551-8.
Article
CAS
Google Scholar
Eichler CMA, Hubal EAC, Xu Y, Cao J, Bi C, Weschler CJ, et al. Assessing human exposure to SVOCs in materials, products, and articles: a modular mechanistic framework. Environ Sci Technol. 2021;55(1):25–43. https://doi.org/10.1021/acs.est.0c02329.
Article
CAS
Google Scholar
Little JC, Weschler CJ, Nazaroff WW, Liu Z, Cohen Hubal EA. Rapid methods to estimate potential exposure to semivolatile organic compounds in the indoor environment. Environ Sci Technol. 2012;46(20):11171–8. https://doi.org/10.1021/es301088a.
Article
CAS
Google Scholar
Kemmlein S, Herzke D, Law RJ. BFR—governmental testing programme. Environ Int. 2003;29(6):781–92. https://doi.org/10.1016/S0160-4120(03)00112-0.
Article
CAS
Google Scholar
Rauert C, Harrad S. Mass transfer of PBDEs from plastic TV casing to indoor dust via three migration pathways--a test chamber investigation. Sci Total Environ. 2015;536:568–74. https://doi.org/10.1016/j.scitotenv.2015.07.050.
Article
CAS
Google Scholar
German Federal Institute for Risk Assessment, Department of Chemicals and Product Safety, Beneventi E, Tietz T, Merkel S. Risk Assessment of Food Contact Materials. EFSA J. 2020;18(Suppl 1):e181109.
Google Scholar
Geueke B, Wagner CC, Muncke J. Food contact substances and chemicals of concern: a comparison of inventories. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2014;31(8):1438–50. https://doi.org/10.1080/19440049.2014.931600.
Article
CAS
Google Scholar
Fantke P, Ernstoff AS, Huang L, Csiszar SA, Jolliet O. Coupled near-field and far-field exposure assessment framework for chemicals in consumer products. Environ Int. 2016;94:508–18. https://doi.org/10.1016/j.envint.2016.06.010.
Article
CAS
Google Scholar
Li L, Arnot JA, Wania F. Towards a systematic understanding of the dynamic fate of polychlorinated biphenyls in indoor, urban and rural environments. Environ Int. 2018;117:57–68. https://doi.org/10.1016/j.envint.2018.04.038.
Article
CAS
Google Scholar
Corsolini S, Metzdorff A, Baroni D, Roscales JL, Jimenez B, Cerro-Galvez E, et al. Legacy and novel flame retardants from indoor dust in Antarctica: sources and human exposure. Environ Res. 2021;196:110344. https://doi.org/10.1016/j.envres.2020.110344.
Article
CAS
Google Scholar
Net S, Sempere R, Delmont A, Paluselli A, Ouddane B. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ Sci Technol. 2015;49(7):4019–35. https://doi.org/10.1021/es505233b.
Article
CAS
Google Scholar
Wang X, Zhu Q, Yan X, Wang Y, Liao C, Jiang G. A review of organophosphate flame retardants and plasticizers in the environment: analysis, occurrence and risk assessment. Sci Total Environ. 2020;731:139071. https://doi.org/10.1016/j.scitotenv.2020.139071.
Article
CAS
Google Scholar
Klinčić D, Dvorscak M, Jagic K, Mendas G, Herceg RS. Levels and distribution of polybrominated diphenyl ethers in humans and environmental compartments: a comprehensive review of the last five years of research. Environ Sci Pollut Res Int. 2020;27(6):5744–58. https://doi.org/10.1007/s11356-020-07598-7.
Article
CAS
Google Scholar
Pantelaki I, Voutsa D. Occurrence, analysis and risk assessment of organophosphate esters (OPEs) in biota: a review. Mar Pollut Bull. 2020;160:111547. https://doi.org/10.1016/j.marpolbul.2020.111547.
Article
CAS
Google Scholar
Liao C, Kim UJ, Kannan K. A review of environmental occurrence, fate, exposure, and toxicity of Benzothiazoles. Environ Sci Technol. 2018;52(9):5007–26. https://doi.org/10.1021/acs.est.7b05493.
Article
CAS
Google Scholar
Careghini A, Mastorgio AF, Saponaro S, Sezenna E. Bisphenol a, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environ Sci Pollut Res Int. 2015;22(8):5711–41. https://doi.org/10.1007/s11356-014-3974-5.
Article
CAS
Google Scholar
Shi ZQ, Liu YS, Xiong Q, Cai WW, Ying GG. Occurrence, toxicity and transformation of six typical benzotriazoles in the environment: a review. Sci Total Environ. 2019;661:407–21. https://doi.org/10.1016/j.scitotenv.2019.01.138.
Article
CAS
Google Scholar
Lai HJ, Ying GG, Ma YB, Chen ZF, Chen F, Liu YS. Occurrence and dissipation of benzotriazoles and benzotriazole ultraviolet stabilizers in biosolid-amended soils. Environ Toxicol Chem. 2014;33(4):761–7. https://doi.org/10.1002/etc.2498.
Article
CAS
Google Scholar
Parajulee A, Lei YD, Kananathalingam A, Mitchell CPJ, Wania F. Investigating the sources and transport of benzotriazole UV stabilizers during rainfall and snowmelt across an urbanization gradient. Environ Sci Technol. 2018;52(5):2595–602.
Article
CAS
Google Scholar
Avagyan R, Luongo G, Thorsen G, Ostman C. Benzothiazole, benzotriazole, and their derivates in clothing textiles--a potential source of environmental pollutants and human exposure. Environ Sci Pollut Res Int. 2015;22(8):5842–9. https://doi.org/10.1007/s11356-014-3691-0.
Article
CAS
Google Scholar
Sorensen L, Groven AS, Hovsbakken IA, Del Puerto O, Krause DF, Sarno A, et al. UV degradation of natural and synthetic microfibers causes fragmentation and release of polymer degradation products and chemical additives. Sci Total Environ. 2021;755(Pt 2):143170. https://doi.org/10.1016/j.scitotenv.2020.143170.
Article
CAS
Google Scholar
Luongo G, Avagyan R, Hongyu R, Ostman C. The washout effect during laundry on benzothiazole, benzotriazole, quinoline, and their derivatives in clothing textiles. Environ Sci Pollut Res Int. 2016;23(3):2537–48. https://doi.org/10.1007/s11356-015-5405-7.
Article
CAS
Google Scholar
Andrade H, Glüge J, Herzke D, Ashta NM, Nayagar SM, Scheringer M. Oceanic long-range transport of organic additives present in plastic products: an overview. Environ Sci Europe. 2021;33(1). https://doi.org/10.1186/s12302-021-00522-x.
De Frond HL, van Sebille E, Parnis JM, Diamond ML, Mallos N, Kingsbury T, et al. Estimating the mass of chemicals associated with ocean plastic pollution to inform mitigation efforts. Integr Environ Assess Manag. 2019;15(4):596–606. https://doi.org/10.1002/ieam.4147.
Article
CAS
Google Scholar
Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, et al. Marine pollution. Plastic waste inputs from land into the ocean. Science. 2015;347(6223):768–71. https://doi.org/10.1126/science.1260352.
Article
CAS
Google Scholar
EFSA. Statement on the presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016;14(6):4501–32.
Google Scholar
Koelmans AA, Besseling E, Foekema EM. Leaching of plastic additives to marine organisms. Environ Pollut. 2014;187:49–54. https://doi.org/10.1016/j.envpol.2013.12.013.
Article
CAS
Google Scholar
Tanaka K, Takada H, Yamashita R, Mizukawa K, Fukuwaka MA, Watanuki Y. Facilitated leaching of additive-derived PBDEs from plastic by Seabirds' stomach oil and accumulation in tissues. Environ Sci Technol. 2015;49(19):11799–807. https://doi.org/10.1021/acs.est.5b01376.
Article
CAS
Google Scholar
Tanaka K, Watanuki Y, Takada H, Ishizuka M, Yamashita R, Kazama M, et al. In vivo accumulation of plastic-derived chemicals into seabird tissues. Curr Biol. 2020;30(4):723–8 e3. https://doi.org/10.1016/j.cub.2019.12.037.
Article
CAS
Google Scholar
Tanaka K, Yamashita R, Takada H. Transfer of hazardous chemicals from ingested plastics to higher-trophic-level organisms. In: Takada H, Karapanagioti HK, editors. Hazardous chemicals associated with plastics in the marine environment. Cham: Springer International Publishing; 2019. p. 267–80.
Google Scholar
Koelmans AA, Diepens NJ, Mohamed Nor NH. Weight of evidence for the microplastic vector effect in the context of chemical risk assessment. In: Bank MS, editor. Plastic in the Environment: Pattern and Process: Springer Open; in press.
Zhang X, Mell A, Li F, Thaysen C, Musselman B, Tice J, et al. Rapid fingerprinting of source and environmental microplastics using direct analysis in real time-high resolution mass spectrometry. Anal Chim Acta. 2020;1100:107–17. https://doi.org/10.1016/j.aca.2019.12.005.
Article
CAS
Google Scholar
Wyer H, Polhemus D, Moore S, Weisberg SB, Coffin S, Rochman CM. Steps scientists can take to inform aquatic microplastics management: a perspective informed by the California experience. Appl Spectrosc. 2020;74(9):971–5.
Article
CAS
Google Scholar