Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017; 3(7):1700782. https://doi.org/10.1126/sciadv.1700782.
Article
CAS
Google Scholar
PlasticsEurope. Plastics – the Facts 2020. Technical report. 2020. https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2020. Accessed 25 June 2021.
Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AWG, McGonigle D, Russell AE. Lost at Sea: Where Is All the Plastic?Science. 2004; 304(5672):838. https://doi.org/10.1126/science.1094559.
Article
CAS
Google Scholar
Arthur C, Baker J, Bamford H. Proceedings of the International Research Workshop on the Occurrence, Effects and Fate of Microplastic Marine Debris. Sept 9-11, 2008. NOAA Technical Memorandum NOS-OR&R-30. 2009.
Kataoka T, Nihei Y, Kudou K, Hinata H. Assessment of the sources and inflow processes of microplastics in the river environments of Japan. Environ Pollut. 2019; 244:958–65. https://doi.org/10.1016/j.envpol.2018.10.111.
Article
CAS
Google Scholar
Meides N, Menzel T, Poetzschner B, Löder MGJ, Mansfeld U, Strohriegl P, Senker J. Reconstructing the Environmental Degradation of Polystyrene by Accelerated Weathering. Environ Sci Technol. 2021; 55(12):7930–7938. https://doi.org/10.1021/acs.est.0c07718.
Article
CAS
Google Scholar
Rochman CM, Brookson C, Bikker J, Djuric N, Earn A, Bucci K, Athey S, Huntington A, McIlwraith H, Munno K, Frond HD, Kolomijeca A, Erdle L, Grbic J, Bayoumi M, Borrelle SB, Wu T, Santoro S, Werbowski LM, Zhu X, Giles RK, Hamilton BM, Thaysen C, Kaura A, Klasios N, Ead L, Kim J, Sherlock C, Ho A, Hung C. Rethinking microplastics as a diverse contaminant suite. Environ Toxicol Chem. 2019; 38(4):703–11. https://doi.org/10.1002/etc.4371.
Article
CAS
Google Scholar
Kooi M, Koelmans AA. Simplifying Microplastic via Continuous Probability Distributions for Size, Shape, and Density. Environ Sci Technol Lett. 2019; 6(9):551–7. https://doi.org/10.1021/acs.estlett.9b00379.
Article
CAS
Google Scholar
Waller CL, Griffiths HJ, Waluda CM, Thorpe SE, Loaiza I, Moreno B, Pacherres CO, Hughes KA. Microplastics in the Antarctic marine system: An emerging area of research. 2017; 598:220–7. https://doi.org/10.1016/j.scitotenv.2017.03.283.
Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ. 2017; 586:127–41. https://doi.org/10.1016/j.scitotenv.2017.01.190.
Article
CAS
Google Scholar
Bergmann M, Mützel S, Primpke S, Tekman MB, Trachsel J, Gerdts G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci Adv. 2019; 5(8):1157. https://doi.org/10.1126/sciadv.aax1157.
Article
CAS
Google Scholar
Hurley RR, Nizzetto L. Fate and occurrence of micro(nano)plastics in soils: Knowledge gaps and possible risks. Curr Opin Environ Sci Health. 2018; 1:6–11. https://doi.org/10.1016/j.coesh.2017.10.006.
Article
Google Scholar
Rochman CM. Microplastics research–from sink to source. Science. 2018; 360(6384):28–9. https://doi.org/10.1126/science.aar7734.
Article
CAS
Google Scholar
Rillig MC, Lehmann A. Microplastic in terrestrial ecosystems. Science. 2020; 368(6498):1430–1. https://doi.org/10.1126/science.abb5979.
Article
CAS
Google Scholar
Löder MGJ, Gerdts G. Methodology Used for the Detection and Identification of Microplastics–A Critical Appraisal In: Bergmann M, Gutow L, Klages M, editors. Marine Anthropogenic Litter. Cham: Springer International Publishing: 2015. p. 201–27.
Google Scholar
Bläsing M, Amelung W. Plastics in soil: Analytical methods and possible sources. Sci Total Environ. 2018; 612:422–35. https://doi.org/10.1016/j.scitotenv.2017.08.086.
Article
CAS
Google Scholar
Piehl S, Leibner A, Löder MGJ, Dris R, Bogner C, Laforsch C. Identification and quantification of macro- and microplastics on an agricultural farmland. Sci Rep. 2018; 8(1):17950. https://doi.org/10.1038/s41598-018-36172-y.
Article
CAS
Google Scholar
Möller JN, Löder MGJ, Laforsch C. Finding Microplastics in Soils: A Review of Analytical Methods. Environ Sci Technol. 2020; 54(4):2078–90. https://doi.org/10.1021/acs.est.9b04618.
Article
CAS
Google Scholar
Möller JN, Heisel I, Satzger A, Vizsolyi EC, Oster J, Agarwal S, Laforsch C, Löder MGJ. Tackling the Challenge of Extracting Microplastics from Soils: Protocol to Purify Soil Samples for Spectroscopic Analysis. Environ Toxicol Chem. 2021. https://doi.org/10.1002/etc.5024.
Horton AA, Dixon SJ. Microplastics: An introduction to environmental transport processes. Wiley Interdiscip Rev: Water. 2018; 5(2):1268. https://doi.org/10.1002/wat2.1268.
Google Scholar
Weithmann N, Möller JN, Löder MGJ, Piehl S, Laforsch C, Freitag R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv. 2018; 4(4):8060. https://doi.org/10.1126/sciadv.aap8060.
Article
CAS
Google Scholar
Allen S, Allen D, Phoenix VR, Le Roux G, Durántez Jiménez P, Simonneau A, Binet S, Galop D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci. 2019; 12(5):339–44. https://doi.org/10.1038/s41561-019-0335-5.
Article
CAS
Google Scholar
Laforsch C, Ramsperger AFRM, Mondellini S, Galloway TS. Microplastics: A Novel Suite of Environmental Contaminants but Present for Decades In: Reichl F-X, Schwenk M, editors. Regulatory Toxicology. Berlin, Heidelberg: Springer: 2021. p. 1–26.
Google Scholar
Rillig MC. Microplastic in Terrestrial Ecosystems and the Soil?Environ Sci Technol. 2012; 46(12):6453–4. https://doi.org/10.1021/es302011r.
Article
CAS
Google Scholar
Van Cauwenberghe L, Devriese L, Galgani F, Robbens J, Janssen CR. Microplastics in sediments: A review of techniques, occurrence and effects. Mar Environ Res. 2015; 111:5–17. https://doi.org/10.1016/j.marenvres.2015.06.007.
Article
CAS
Google Scholar
Waldschläger K, Schüttrumpf H. Infiltration Behavior of Microplastic Particles with Different Densities, Sizes, and Shapes–From Glass Spheres to Natural Sediments. Environ Sci Technol. 2020; 54(15):9366–73. https://doi.org/10.1021/acs.est.0c01722.
Article
CAS
Google Scholar
Yu M, van der Ploeg M, Lwanga EH, Yang X, Zhang S, Ma X, Ritsema CJ, Geissen V. Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows. Environ Chem. 2019; 16(1):31. https://doi.org/10.1071/EN18161.
Article
CAS
Google Scholar
Keller AS, Jimenez-Martinez J, Mitrano DM. Transport of Nano- and Microplastic through Unsaturated Porous Media from Sewage Sludge Application. Environ Sci Technol. 2020; 54(2):911–20. https://doi.org/10.1021/acs.est.9b06483.
Article
CAS
Google Scholar
Huerta Lwanga E, Gertsen H, Gooren H, Peters P, Salánki T, van der Ploeg M, Besseling E, Koelmans AA, Geissen V. Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ Pollut. 2017; 220:523–31. https://doi.org/10.1016/j.envpol.2016.09.096.
Article
CAS
Google Scholar
Rillig MC, Ziersch L, Hempel S. Microplastic transport in soil by earthworms. Sci Rep. 2017; 7(1):1362. https://doi.org/10.1038/s41598-017-01594-7.
Article
CAS
Google Scholar
Nizzetto L, Bussi G, Futter MN, Butterfield D, Whitehead PG. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environ Sci Pollut Impacts. 2016; 18(8):1050–9. https://doi.org/10.1039/C6EM00206D.
Article
CAS
Google Scholar
Black KS, Athey S, Wilson P, Evans D. The use of particle tracking in sediment transport studies: A review. Geol Soc Lond Spec Publ. 2007; 274(1):73–91. https://doi.org/10.1144/GSL.SP.2007.274.01.09.
Article
Google Scholar
White TE. Status of measurement techniques for coastal sediment transport. Coast Eng. 1998; 35(1-2):17–45.
Article
Google Scholar
Liedermann M, Tritthart M, Habersack H. Particle path characteristics at the large gravel-bed river Danube: Results from a tracer study and numerical modelling. Earth Surf Process Landforms. 2013; 38:512–522. https://doi.org/10.1002/esp.3338.
Article
Google Scholar
McComb P, Black K. Detailed Observations of Littoral Transport Using Artificial Sediment Tracer, in a High-Energy, Rocky Reef and Iron Sand Environment. J Coast Res. 2005; 212:358–73. https://doi.org/10.2112/03-574.1.
Article
Google Scholar
Vila-Concejo A, Ferreira Ó, Ciavola P, Matias A, Dias JMA. Tracer studies on the updrift margin of a complex inlet system. Mar Geol. 2004; 208(1):43–72. https://doi.org/10.1016/j.margeo.2004.04.020.
Article
Google Scholar
Katsuragi H. Length and time scales of a liquid drop impact and penetration into a granular layer. J Fluid Mech. 2011; 675:552–73. https://doi.org/10.1017/jfm.2011.31.
Article
CAS
Google Scholar
Long EJ, Hargrave GK, Cooper JR, Kitchener BGB, Parsons AJ, Hewett CJM, Wainwright J. Experimental investigation into the impact of a liquid droplet onto a granular bed using three-dimensional, time-resolved, particle tracking. Phys Rev E. 2014; 89(3):032201. https://doi.org/10.1103/PhysRevE.89.032201.
Article
CAS
Google Scholar
Hardy RA, Pates JM, Quinton JN, Coogan MP. A novel fluorescent tracer for real-time tracing of clay transport over soil surfaces. CATENA. 2016; 141:39–45. https://doi.org/10.1016/j.catena.2016.02.011.
Article
CAS
Google Scholar
Hardy RA, James MR, Pates JM, Quinton JN. Using real time particle tracking to understand soil particle movements during rainfall events. CATENA. 2017; 150:32–8. https://doi.org/10.1016/j.catena.2016.11.005.
Article
Google Scholar
Teleki PG. Fluorescent sand tracers. J Sed Res. 1966; 36(2):468–85. https://doi.org/10.1306/74D714EC-2B21-11D7-8648000102C1865D.
Google Scholar
Rinnan R, Rinnan Å. Application of near infrared reflectance (NIR) and fluorescence spectroscopy to analysis of microbiological and chemical properties of arctic soil. Soil Biol Biochem. 2007; 39(7):1664–73. https://doi.org/10.1016/j.soilbio.2007.01.022.
Article
CAS
Google Scholar
Hardy RA, Quinton JN, James MR, Fiener P, Pates JM. High precision tracing of soil and sediment movement using fluorescent tracers at hillslope scale. Earth Surf Process Landf. 2019; 44(5):1091–9. https://doi.org/10.1002/esp.4557.
Article
Google Scholar
Windsor FM, Durance I, Horton AA, Thompson RC, Tyler CR, Ormerod SJ. A catchment-scale perspective of plastic pollution. Glob Chang Biol. 2019; 25(4):1207–21. https://doi.org/10.1111/gcb.14572.
Article
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012; 9(7):671–5. https://doi.org/10.1038/nmeth.2089.
Article
CAS
Google Scholar
Saurabh S, Maji S, Bruchez MP. Evaluation of sCMOS cameras for detection and localization of single Cy5 molecules. Opt Express. 2012; 20(7):7338–49. https://doi.org/10.1364/OE.20.007338.
Article
CAS
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. https://www.R-project.org/.
Google Scholar
Allan DB, Caswell T, Keim NC, van der Wel CM. soft-matter/trackpy: Trackpy v0.4.2 (Version v0.4.2). Zenodo. 2019. http://doi.org/10.5281/zenodo.3492186.
Wasserstein RL, Lazar NA. The ASA Statement on p-values: Context, process, and purpose. Am Stat. 2016; 70(2):129–33. https://doi.org/10.1080/00031305.2016.1154108.
Article
Google Scholar
Wasserstein RL, Schirm AL, Lazar NA. Moving to a World Beyond “p < 0.05”. Am Stat. 2019; 73(sup1):1–19. https://doi.org/10.1080/00031305.2019.1583913.
Article
Google Scholar
Efron B, Tibshirani RJ. An Introduction to the Bootstrap: CRC press; 1994.
Davison AC, Hinkley DV. Bootstrap Methods and Their Application, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press; 1997. https://doi.org/10.1017/CBO9780511802843.
Book
Google Scholar
Kuhn M, Chow F, Wickham H. Rsample: General Resampling Infrastructure. 2020. R package version 0.0.7. https://CRAN.R-project.org/package=rsample.
Kuhn M, Wickham H. Tidymodels: a Collection of Packages for Modeling and Machine Learning Using Tidyverse Principles. 2020. https://www.tidymodels.org.
Lehmann M. High Performance Free Surface LBM on GPUs. 2019. Master thesis, Biofluid Simulation and Modeling - Theorethische Physik VI, University of Bayreuth. Germany. https://doi.org/10.15495/EPub_UBT_00005400.
Körner C, Thies M, Hofmann T, Thürey N, Rüde U. Lattice Boltzmann model for free surface flow for modeling foaming. J Stat Phys. 2005; 121(1-2):179–96.
Article
Google Scholar
Janßen C, Krafczyk M. Free surface flow simulations on GPGPUs using the LBM. Comput Math Appl. 2011; 61(12):3549–63.
Article
Google Scholar
Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen EM. The lattice Boltzmann method. Springer Int Publ. 2017; 10:978–3.
Google Scholar
Chapman S, Cowling TG, Burnett D. The Mathematical Theory of Non-uniform Gases: an Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge, United Kingdom: Cambridge university press; 1990.
Google Scholar
Häusl F. MPI-based multi-GPU extension of the Lattice Boltzmann Method. 2019. Bachelor thesis, Biofluid Simulation and Modeling - Theorethische Physik VI, University of Bayreuth. Germany.
Lehmann M, Gekle S. Analytic solution to the piecewise linear interface construction problem and its application in curvature calculation for volume-of-fluid simulation codes. arXiv preprint arXiv:2006.12838. 2020. https://arxiv.org/abs/2006.12838.
Edge E. Water – Density Viscosity Specific Weight. https://www.engineersedge.com/physics/water__density_viscosity_specific_weight_13146.htm. Accessed 12 Feb 2021.
Gustavson S. Perlin Noise. https://github.com/stegu/perlin-noise. Accessed 12 Feb 2021.
Erni-Cassola G, Gibson MI, Thompson RC, Christie-Oleza JA. Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 μm) in Environmental Samples. Environ Sci Technol. 2017; 51(23):13641–8. https://doi.org/10.1021/acs.est.7b04512.
Article
CAS
Google Scholar
Konde S, Ornik J, Prume JA, Taiber J, Koch M. Exploring the potential of photoluminescence spectroscopy in combination with Nile Red staining for microplastic detection. Mar Pollut Bull. 2020; 159:111475. https://doi.org/10.1016/j.marpolbul.2020.111475.
Article
CAS
Google Scholar
Batchelor CK, Batchelor G. An Introduction to Fluid Dynamics. Cambridge: Cambridge university press; 2000.
Book
Google Scholar
Hassan MA, Reid I. The influence of microform bed roughness elements on flow and sediment transport in gravel bed rivers. Earth Surf Process Landf. 1990; 15(8):739–50. https://doi.org/10.1002/esp.3290150807.
Article
Google Scholar
Chaplot V, Poesen J. Sediment, soil organic carbon and runoff delivery at various spatial scales. CATENA. 2012; 88(1):46–56. https://doi.org/10.1016/j.catena.2011.09.004.
Article
CAS
Google Scholar
Bauer BO, Davidson-Arnott RGD, Hesp PA, Namikas SL, Ollerhead J, Walker IJ. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport. Geomorphology. 2009; 105(1-2):106–16,. https://doi.org/10.1016/j.geomorph.2008.02.016.
Article
Google Scholar
Otvos EG. Rain-Induced Beach Processes; Landforms of Ground Water Sapping and Surface Runoff. J Coast Res. 1999; 15(4):16.
Google Scholar
Liu J, Paul JD, Gollub JP. Measurements of the primary instabilities of film flows. J Fluid Mech. 1993; 250:69–101.
Article
CAS
Google Scholar
Ramaswamy B, Chippada S, Joo S. A full-scale numerical study of interfacial instabilities in thin-film flows. J Fluid Mech. 1996; 325:163–94.
Article
CAS
Google Scholar
Gjevik B. Occurrence of finite-amplitude surface waves on falling liquid films. Phys Fluids. 1970; 13(8):1918–25.
Article
CAS
Google Scholar
Lu C, Jiang S-Y, Duan R-Q. Wave characteristics of falling film on inclination plate at moderate reynolds number. Sci Technol Nucl Installations. 2016; 2016:7. Article ID 6586097. https://doi.org/10.1155/2016/6586097.
Roy R, Jain S. A study of thin water film flow down an inclined plate without and with countercurrent air flow. Exp Fluids. 1989; 7(5):318–28.
Article
CAS
Google Scholar
Yu Y, Cheng X. Experimental study of water film flow on large vertical and inclined flat plate. Prog Nucl Energy. 2014; 77:176–86.
Article
CAS
Google Scholar
Ramadurgam S, Chakravarthy R, Tomar G, Govindarajan R. Stability of developing film flow down an inclined surface. Phys Fluids. 2012; 24(10):102109.
Article
CAS
Google Scholar
Gómez J, Nearing M. Runoff and sediment losses from rough and smooth soil surfaces in a laboratory experiment. CATENA. 2005; 59(3):253–66.
Article
Google Scholar
Zhao L, Huang C, Wu F. Effect of microrelief on water erosion and their changes during rainfall. Earth Surf Process Landf. 2016; 41(5):579–86. https://doi.org/10.1002/esp.3844.
Article
Google Scholar
Gilley JE. EROSION | Water–Induced In: Hillel D, editor. Encyclopedia of Soils in the Environment. Oxford: Elsevier: 2005. p. 463–9. https://doi.org/10.1016/B0-12-348530-4/00262-9.
Google Scholar
Miller WP, Baharuddin MK. Particle Size of Interrill-eroded Sediments from Highly Weathered Soils. Soil Sci Soc Am J. 1987; 51(6):1610–5. https://doi.org/10.2136/sssaj1987.03615995005100060037x.
Article
Google Scholar
Asadi H, Moussavi A, Ghadiri H, Rose CW. Flow-driven soil erosion processes and the size selectivity of sediment. J Hydrol. 2011; 406(1):73–81. https://doi.org/10.1016/j.jhydrol.2011.06.010.
Article
Google Scholar
Wang L, Shi ZH. Size Selectivity of Eroded Sediment Associated with Soil Texture on Steep Slopes. Soil Sci Soc Am J. 2015; 79:917–929. https://doi.org/10.2136/sssaj2014.10.0415.
Article
CAS
Google Scholar
Asadi H, Ghadiri H, Rose CW, Rouhipour H. Interrill soil erosion processes and their interaction on low slopes. Earth Surf Process Landf. 2007; 32(5):711–24. https://doi.org/10.1002/esp.1426.
Article
Google Scholar
Renard KG. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE): U.S. Department of Agriculture, Agricultural Research Service Agriculture Hadnbook Number 703; 1997.
Scheurer M, Bigalke M. Microplastics in Swiss Floodplain Soils. Environ Sci Technol. 2018; 52(6):3591–8. https://doi.org/10.1021/acs.est.7b06003.
Article
CAS
Google Scholar
Weber CJ, Opp C. Spatial patterns of mesoplastics and coarse microplastics in floodplain soils as resulting from land use and fluvial processes. Environ Pollut. 2020; 267:115390. https://doi.org/10.1016/j.envpol.2020.115390.
Article
CAS
Google Scholar
Fulazzaky MA, Khamidun MH, Yusof B. Sediment traps from synthetic construction site stormwater runoff by grassed filter strip. J Hydrol. 2013; 502:53–61. https://doi.org/10.1016/j.jhydrol.2013.08.019.
Article
Google Scholar
Lebreton LCM, van der Zwet J, Damsteeg J-W, Slat B, Andrady A, Reisser J. River plastic emissions to the world’s oceans. Nat Commun. 2017; 8(1):15611. https://doi.org/10.1038/ncomms15611.
Article
CAS
Google Scholar
Lechthaler S, Esser V, Schüttrumpf H, Stauch G. Why analysing microplastics in floodplains matters: Application in a sedimentary context. Environ Sci Pollut Impacts. 2021; 23(1):117–31. https://doi.org/10.1039/D0EM00431F.
Article
CAS
Google Scholar