PlasticsEurope. Plastics - the facts 2019: An analysis of European plastics production, demand and waste data. https://www.plasticseurope.org. Accessed 06 March 2020.
Ryan PG, Moloney CL. Marine litter keeps increasing. Nature. 1993;361(6407):23. https://doi.org/10.1038/361023a0.
Article
Google Scholar
Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AWG, et al. Lost at sea: where is all the plastic? Science. 2004;304(5672):838. https://doi.org/10.1126/science.1094559.
Article
CAS
Google Scholar
Derraik JGB. The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull. 2002;44(9):842–52. https://doi.org/10.1016/S0025-326X(02)00220-5.
Article
CAS
Google Scholar
Backhaus T, Wagner M. Microplastics in the environment: much ado about nothing? A Debate Global Challenges. 2019;4(6):1900022. https://doi.org/10.1002/gch2.201900022.
Article
Google Scholar
Bertling J, Bertling R, Hamann L. Kunststoffe in der Umwelt: Mikro- und Makroplastik. Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT (hrsg.), Oberhausen; 2018.
Andrady AL. The plastic in microplastics: a review. Mar Pollut Bull. 2017;119(1):12–22. https://doi.org/10.1016/j.marpolbul.2017.01.082.
Article
CAS
Google Scholar
Microbead-Free Waters Act of 2015. PUBLIC LAW 114–114. 2015:129 STAT. 3129.
ECHA. Annex XV Restriction Report: Intentionally added microplastics. 2019; Version 1.2.
Katsnelson A. News feature: microplastics present pollution puzzle. PNAS. 2015;112(18):5547–9. https://doi.org/10.1073/pnas.1504135112.
Article
CAS
Google Scholar
Mitrano DM, Wohlleben W. Microplastic regulation should be more precise to incentivize both innovation and environmental safety. Nature Communications. 2020;11(1). https://doi.org/10.1038/s41467-020-19069-1.
Nelson TF, Remke SC, Kohler H-PE, McNeill K, Sander M. Quantification of synthetic polyesters from biodegradable mulch films in soils. Environ Sci Technol. 2020;54(1):266–75. https://doi.org/10.1021/acs.est.9b05863.
Article
CAS
Google Scholar
de Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, Faltin E, et al. Microplastics can change soil properties and affect plant performance. Environ Sci Technol. 2019;53(10):6044–52. https://doi.org/10.1021/acs.est.9b01339.
Article
CAS
Google Scholar
Hu Y, Gong M, Wang J, Bassi A. Current research trends on microplastic pollution from wastewater systems: a critical review. Rev Environ Sci Biotechnol. 2019;18(2):207–30. https://doi.org/10.1007/s11157-019-09498-w.
Article
Google Scholar
Miller ME, Kroon FJ, Motti CA. Recovering microplastics from marine samples: a review of current practices. Mar Pollut Bull. 2017;123(1-2):6–18. https://doi.org/10.1016/j.marpolbul.2017.08.058.
Article
CAS
Google Scholar
Alimba CG, Faggio C. Microplastics in the marine environment: current trends in environmental pollution and mechanisms of toxicological profile. Environ Toxicol Pharmacol. 2019;68:61–74. https://doi.org/10.1016/j.etap.2019.03.001.
Article
CAS
Google Scholar
Koelmans AA, Mohamed Nor NH, Hermsen E, Kooi M, Mintenig SM, De France J. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res. 2019;155:410–22. https://doi.org/10.1016/j.watres.2019.02.054.
Article
CAS
Google Scholar
Li J, Liu H, Chen JP. Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018;137:362–74. https://doi.org/10.1016/j.watres.2017.12.056.
Article
CAS
Google Scholar
Simon M, van Alst N, Vollertsen J. Quantification of microplastic mass and removal rates at wastewater treatment plants applying focal plane Array (FPA)-based Fourier transform infrared (FT-IR) imaging. Water Res. 2018;142:1–9. https://doi.org/10.1016/j.watres.2018.05.019.
Article
CAS
Google Scholar
Li X, Chen L, Ji Y, Li M, Dong B, Qian G, et al. Effects of chemical pretreatments on microplastic extraction in sewage sludge and their physicochemical characteristics. Water Res. 2020;171:115379. https://doi.org/10.1016/j.watres.2019.115379.
Article
CAS
Google Scholar
Mitrano DM, Beltzung A, Frehland S, Schmiedgruber M, Cingolani A, Schmidt F. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nat Nanotechnol. 2019;14(4):362–8. https://doi.org/10.1038/s41565-018-0360-3.
Article
CAS
Google Scholar
Möller JN, Löder MGJ, Laforsch C. Finding microplastics in soils: a review of analytical methods. Environ Sci Technol. 2020;54(4):2078–90. https://doi.org/10.1021/acs.est.9b04618.
Article
CAS
Google Scholar
Gündoğdu S, Çevik C, Güzel E, Kilercioğlu S. Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environmental Monitoring and Assessment. 2018;190(11). https://doi.org/10.1007/s10661-018-7010-y.
Foekema EM, De Gruijter C, Mergia MT, Andries van Franeker J, Murk AJ, Koelmans AA. Plastic in North Sea fish. Environ Sci Technol. 2013;47(15):8818–24. https://doi.org/10.1021/es400931b.
Article
CAS
Google Scholar
Hurley RR, Lusher AL, Olsen M, Nizzetto L. Validation of a method for extracting microplastics from complex, organic-rich. Environ Matrices Environ Sci Technol. 2018;52(13):7409–17. https://doi.org/10.1021/acs.est.8b01517.
Article
CAS
Google Scholar
Lang M, Yu X, Liu J, Xia T, Wang T, Jia H, et al. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics. Sci Total Environ. 2020;722:137762. https://doi.org/10.1016/j.scitotenv.2020.137762.
Article
CAS
Google Scholar
Munno K, Helm PA, Jackson DA, Rochman C, Sims A. Impact of temperature and selected chemical digestion methods on microplastic particles. Environ Toxicol Chem. 2018;37(1):91–8. https://doi.org/10.1002/etc.3935.
Article
CAS
Google Scholar
Babuponnusami A, Muthukumar K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng. 2014;2(1):557–72. https://doi.org/10.1016/j.jece.2013.10.011.
Article
CAS
Google Scholar
Gnann M, Gregor C-H, Schelle S. Chemisch-oxidatives Verfahren zur Reinigung hochbelasteter Abwässer (DE 4134003 A1). Deutsches Patentamt 1993.
Lin SH, Lo CC. Fenton process for treatment of Desizing wastewater. Water Res. 1997;31(8):2051–6. https://doi.org/10.1016/S0043-1354(97)00024-9.
Avio CG, Gorbi S, Regoli F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: first observations in commercial species from Adriatic Sea. Mar Environ Res. 2015;111:18–26. https://doi.org/10.1016/j.marenvres.2015.06.014.
Article
CAS
Google Scholar
Mintenig SM, Int-Veen I, Löder MGJ, Primpke S, Gerdts G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017;108:365–72. https://doi.org/10.1016/j.watres.2016.11.015.
Article
CAS
Google Scholar
Sujathan S, Rosenwinkel K-H, Kniggendorf A-K, Nogueira R. Heat and bleach: a cost-efficient method for extracting microplastics from return activated sludge. Arch Environ Contam Toxicol. 2017;73(4):641–8. https://doi.org/10.1007/s00244-017-0415-8.
Article
CAS
Google Scholar
Nuelle M-T, Dekiff JH, Remy D, Fries E. A new analytical approach for monitoring microplastics in marine sediments. Environ Pollut. 2014;184:161–9. https://doi.org/10.1016/j.envpol.2013.07.027.
Article
CAS
Google Scholar
Kern W, Puotinen DA. Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Review. 1970;31(2):187–206.
CAS
Google Scholar
Zhao C, Qiao X, Shao Q, Hassan M, Ma Z, Yao L. Synergistic effect of hydrogen peroxide and ammonia on lignin. Ind Crop Prod. 2020;146:112177. https://doi.org/10.1016/j.indcrop.2020.112177.
Article
CAS
Google Scholar
Itano M, Kern FW, Miyashita M, Ohmi T. Particle removal from silicon wafer surface in wet cleaning process. Trans Semiconduct Manufact. 1993;6(3):258–67. https://doi.org/10.1109/66.238174.
Article
Google Scholar
Pan TM, Lei TF, Chao TS, Liaw MC, Ko FH, Lu CP. One-step cleaning solution to replace the conventional RCA two-step cleaning recipe for Pregate oxide cleaning. J Electrochem Soc. 2001;148(6):G315–G20. https://doi.org/10.1149/1.1369374.
Article
CAS
Google Scholar
Catarino AI, Thompson R, Sanderson W, Henry TB. Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. Environ Toxicol Chem. 2017;36(4):947–51. https://doi.org/10.1002/etc.3608.
Article
CAS
Google Scholar
von Friesen LW, Granberg ME, Hassellov M, Gabrielsen GW, Magnusson K. An efficient and gentle enzymatic digestion protocol for the extraction of microplastics from bivalve tissue. Mar Pollut Bull. 2019;142:129–34. https://doi.org/10.1016/j.marpolbul.2019.03.016.
Article
CAS
Google Scholar
Tagg AS, Sapp M, Harrison JP, Ojeda JJ. Identification and quantification of microplastics in wastewater using focal plane Array-based reflectance micro-FT-IR imaging. Anal Chem. 2015;87(12):6032–40. https://doi.org/10.1021/acs.analchem.5b00495.
Article
CAS
Google Scholar
Cole M, Webb H, Lindeque PK, Fileman ES, Halsband C, Galloway TS. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci Rep. 2014;4:4528. https://doi.org/10.1038/srep04528.
Herrera A, Garrido-Amador P, Martinez I, Samper MD, Lopez-Martinez J, Gomez M, et al. Novel methodology to isolate microplastics from vegetal-rich samples. Mar Pollut Bull. 2018;129(1):61–9. https://doi.org/10.1016/j.marpolbul.2018.02.015.
Article
CAS
Google Scholar
Zimmermann T, Jepsen D, Reihlen A. Use of nanomaterials in tires – environmental relevance and emissions: ÖKOPOL GmbH - Institut für Ökologie und Politik; NanoDialogue of the German Government, Topical Report, 2018.
Gottipolu RR, Landa ER, Schladweiler MC, McGee JK, Ledbetter AD, Richards JH, et al. Cardiopulmonary responses of Intratracheally instilled Tire particles and constituent metal components. Inhal Toxicol. 2008;20(5):473–84. https://doi.org/10.1080/08958370701858427.
Article
CAS
Google Scholar
Künkel A, Becker J, Börger L, Hamprecht J, Koltzenburg S, Loos R, et al. Polymers, biodegradable. Ullman's Encyclopedia of Industrial Chemistry; Wiley 2016:1–29.
Gross RA, Kalra B. Biodegradable polymers for the environment. Green Chem. 2002;297:803–7. https://doi.org/10.1126/science.297.5582.803.
Al-Azzawi MSM, Kefer S, Weißer J, Reichel J, Schwaller C, Glas K, et al. Validation of Sample Preparation Methods for Microplastic Analysis in Wastewater Matrices—Reproducibility and Standardization. Water. 2020;12(9). https://doi.org/10.3390/w12092445.
BASF SE. Thermoplastic Polyurethane Elastomers (TPU) - Elastollan Chemical Properties www.elastollan.de. Accessed 11 April 2020.
Gilbert M. Brydson's Plastics Materials: Elsevier Inc.; 2017.
Masura J, Baker J, Foster G, Arthur G. Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48. 2015.
Lofrano G, Meriç S, Belgiorno V, Napoli RMA. Fenton’s oxidation of various-based tanning materials. Desalination. 2007;211(1-3):10–21. https://doi.org/10.1016/j.desal.2006.03.589.
Article
CAS
Google Scholar
Al Mgheer T, Abdulrazzak FH. Oxidation of multi-walled carbon nanotubes in acidic and basic piranha mixture. Front Nanosci Nanotechnol. 2016;2(4):155–8. https://doi.org/10.15761/FNN.1000127.
Ghosal S, Chen M, Wagner J, Wang ZM, Wall S. Molecular identification of polymers and anthropogenic particles extracted from oceanic water and fish stomach - a Raman micro-spectroscopy study. Environ Pollut. 2018;233:1113–24. https://doi.org/10.1016/j.envpol.2017.10.014.
Article
CAS
Google Scholar
Malvern Panalytical. Mastersizer 3000 - Die intelligente Partikelgrößenbestimmung. https://www.malvernpanalyticalcom/de/products/product-range/mastersizer-range/mastersizer-3000. Accessed 12 May 2020.
Lunt J. Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab. 1998;59(1-3):145–52. https://doi.org/10.1016/S0141-3910(97)00148-1.
Article
CAS
Google Scholar
Witt U, Müller R-J, Deckwer W-D. Evaluation of the biodegradability of Copolyesters containing aromatic compounds by investigations of model oligomers. J Environ Polymer Degradation. 1996;4(1):9–20. https://doi.org/10.1007/BF02083878.
Article
CAS
Google Scholar
Müller R-J, Witt U, Rantze E, Deckwer W-D. Architecture of containing biodegradable copolyesters aromatic constituents. Polym Degrad Stab. 1998;59(1-3):203–8. https://doi.org/10.1016/S0141-3910(97)00186-9.
Article
Google Scholar
Elsner P, Eyerer P, Hirth T. Kunststoffe - Eigenschaften und Anwendungen: Springer-Verlag. Heidelberg; 2012.
Jasmee S, Omar G, Masripan NAB, Kamarolzaman AA, Ashikin AS, Che Ani F. Hydrophobicity performance of polyethylene terephthalate (PET) and thermoplastic polyurethane (TPU) with thermal effect. Mater Res Express. 2018;5(9).
Scholz P, Wachtendorf V, Panne U, Weidner SM. Degradation of MDI-based polyether and polyester-polyurethanes in various environments - effects on molecular mass and crosslinking. Polym Test. 2019;77:105881. https://doi.org/10.1016/j.polymertesting.2019.04.028.
Article
CAS
Google Scholar
BASF SE. Thermoplastic polyurethane elastomers (TPU) -Elastollan® chemical resistance. 2011.
Francisco DL, Paiva LB, Aldeia W. Advances in polymer nanocomposites: a review. Polym Compos. 2019;40(3):851–70. https://doi.org/10.1002/pc.24837.
Article
CAS
Google Scholar
Jiayong C, Shuqiu Y, Huizhou L, Xiquan M, Zhichun W. New mixed solvent systems for the extraction and separation of ferric iron in sulphate solutions. Hydrometallurgy. 1992;30:401–16. https://doi.org/10.1016/0304-386X(92)90096-I.
Paulish AG, Dmitriev AK, Gelfand AV, Pyrgaeva SM. Absorption spectral characteristics of infrared radiation in silicon dioxide films for thermal radiation detectors. Optoelectronics Instrument Data Process. 2019;55(5):508–12. https://doi.org/10.3103/S8756699019050145.
Article
Google Scholar
Guo M, Kanezashi M, Nagasawa H, Yu L, Yamamoto K, Gunji T, et al. Tailoring the microstructure and permeation properties of bridged organosilica membranes via control of the bond angles. J Membr Sci. 2019;584:56–65. https://doi.org/10.1016/j.memsci.2019.04.072.
Article
CAS
Google Scholar
Musić S, Filipović-Vinceković N, Sekovanić L. Precipitation of amorphous SiO2 particles and their properties. Braz J Chem Eng. 2011;28(1):89–94. https://doi.org/10.1590/S0104-66322011000100011.
Article
Google Scholar
Gillespie RJ, Robinson EA. Characteristic vibrational frequencies of compounds containing Si-O-Si, P-O-P, S-O-S, and cl-O-cl bridging groups. Can J Chem. 1964;42(11):2496–503. https://doi.org/10.1139/v64-366.
Article
CAS
Google Scholar
Ash M. Handbook of fillers, extenders, and diluents: synapse information resources, U.S.; 1998.
Koltzenburg S, Maskos M, Nuyken O. Polymere: Synthese, Eigenschaften und Anwendungen, Springer-Verlag. Berlin Heidelberg; 2014.