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Abstract 

Effects of micro- and nanoplastic particles (MNP) on organisms have been increasingly reported in recent years, 
with a large number of studies conducted on water fleas of the genus Daphnia. Most of the available studies used 
pristine particles that have not been exposed to the environment or to organic substances. In natural environ-
ments, however, organic substances like dissolved organic matter (DOM) attach to the MNP, forming an ecocorona 
on the particles’ surface. How the formation of an ecocorona influences MNP toxicity is still uncertain. While some 
studies suggest that DOM can mitigate the negative effects of MNP on organisms, other studies did not find such 
associations. In addition, it is unclear whether the DOM attached to the particles’ surface attenuates the effects 
of MNP directly or whether co-exposure with DOM solved in the medium attenuates MNP toxicity indirectly, 
for instance by increasing Daphnia‘s resilience to stressors in general. To draw more solid conclusions about the direc-
tion and size of the mediating effect of DOM on MNP-associated immobilization in Daphnia spp., we synthesized 
evidence from the published literature and compiled 305 data points from 13 independent studies. The results 
of our meta-analysis show that the toxic effects of MNP are likely reduced in the presence of certain types of DOM 
in the exposure media. We found similar mediating effects when MNP were incubated in media containing DOM 
before the exposure experiments, although to a lesser extent. Future studies designed to disentangle the effects 
of DOM attached to the MNP from the general effects of DOM in the exposure medium will contribute to a deeper 
mechanistic understanding of MNP toxicity in nature and enhance the reliability of MNP risk assessment.
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Graphical Abstract

Introduction
The number of studies investigating the potential harm of 
micro- and nanoplastic particles (MNP) to organisms has 
increased substantially over the last years [1]. MNP are 
ingested by animals and can block their digestive tract, 
injure gut epithelia and change the gut microbiome [2, 3]. 
If small enough, particles can translocate into tissues and 
cells [4–7]  and induce inflammatory responses and cellu-
lar damage [8,9]. On an organismic level, effects on body 
growth, reproduction and survival have been reported, 
among others [10–12]. In addition to effects elicited by the 
particles themselves, additives such as UV-stabilizers [13] 
or plasticizers [14] added to the polymers may leach from 
the particles and induce toxic responses [15, 16]. Pollutants 
or pathogens may attach to the particle surfaces and induce 
toxic effects upon ingestion (vector effect, [17, 18], but see 
also [19, 20]).

Due to their complexity, the effects of MNP cannot be 
easily generalized. Unlike chemicals which have distinct 
molecular structures and stable properties and can usually 
be assigned unique identifiers (e.g., Chemical Abstracts 
Service (CAS) number), MNP are more diverse. Each sin-
gle particle possesses its own set of chemical and physical 

properties. These properties include simple characteris-
tics such as polymer type, size and shape, as well as more 
complex properties like mixtures of plastic-associated 
chemicals, surface structure and charge, and substances 
attached to the particles’ surface including organic sub-
stances from the environment (ecocorona; [21]), proteins 
(protein corona, [22, 23]) and bacteria (biofilm, [24, 25]). 
In addition, all these properties can change over time. 
This complexity makes extensive testing necessary if we 
want to understand how specific MNP properties relate to 
specific toxicity outcomes and how strong effects are to be 
expected in natural environments.

Water fleas of the genus Daphnia are important stand-
ard test organisms for aquatic systems that occur in most 
stagnant and slowly flowing freshwater habitats. As part 
of the zooplankton, Daphnia spp. play an essential role 
in the aquatic food web. They form a link from primary 
producer plankton which contains essential fatty acids to 
higher trophic levels of the food web and are considered 
sensitive keystone species. As highly effective filter feed-
ers they are exposed to substances and matter contained 
in the surrounding water. The non-selective feeding 
method makes them particularly vulnerable to accidental 
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ingestion of particulate pollutants. Daphnia spp. are 
easy to maintain in the lab, as they have short generation 
times and typically reproduce parthenogenetically, if not 
stressed. Consequently, Daphnia spp. are widely used in 
acute and chronic standard toxicity tests [26, 27]. Daph-
nia magna is the most tested aquatic invertebrate spe-
cies in studies investigating the ecotoxicological effects of 
MNP on organisms (see [28] and the Toxicity of Micro-
plastics Explorer (ToMEx) database: [29]).

Several studies have shown effects of MNP on Daph-
nia spp. including a variety of endpoints, concentrations 
and particle characteristics (for an overview see [28]). 
For example, Eltemsah & Bøhn [30] observed increased 
mortality rates, decreased growth, and stimulation of 
early reproduction at the expense of later reproduction 
in Daphnia exposed to polystyrene microbeads,  Zhang 
et  al. [31] observed changes in levels of radical oxygen 
species (ROS),  and  Lin et  al. [32] observed changes in 
the daphnids’ swimming activity. While earlier studies 
often tested only one specific type of MNP, later studies 
more frequently demonstrated that effects are not uni-
form across all types of MNP, but instead depend on the 
MNPs’ properties. Effects have been shown to depend, 
among others, on polymer type, particle size and shape, 
surface charge and the presence of additives [15, 16, 32–
36]. Most studies so far have worked with pristine par-
ticles [28], i.e., particles that have not had contact with 
natural environments. Only a few studies have attempted 
to investigate effects under more realistic circumstances. 
Whether effects observed in the lab are representative 
of true effects expected in nature is therefore still under 
debate [21, 37] (see also [38]).

In natural environments, an ecocorona forms on the 
particles within seconds when organic molecules includ-
ing dissolved organic matter (DOM) attach to the MNPs’ 
surface (e.g., [39]). This ecocorona alters the particles’ 
surface structure and charge [5, 6, 25, 40, 41], influences 
their behavior in the water column [42, 43], and modi-
fies their attachment rate to cellular surfaces [5, 6]. These 
alterations may in consequence also affect outcomes on 
the organismic level, for instance mediated by changes 
in uptake and tissue translocation rates [5, 6, 44, 45]. In 
Daphnia, it has been demonstrated that the presence of 
an ecocorona influences the uptake rates of MNP and 
their retention time in the gut [37]. In MNP-exposed 
organisms, the presence of DOM has for instance been 
shown to alter effects on mobility/survival (e.g., [22, 46, 
47]), feeding behavior [37] and molecular effects (e.g., 
[22]). However, deriving a general pattern for the direc-
tion of these mediating effects is still challenging. One 
reason for this is that results in the published literature 
are not entirely consistent: while ameliorating effects of 

ecocorona formation and presence of DOM on organ-
isms were found for some MNP (e.g., [34, 48, 49]), this 
was not the case for other MNP (e.g., [50, 51]), and also 
increased toxicities have been observed [37]. Another 
factor complicating generalized conclusions is the way 
experiments are conducted. While some experiments co-
exposed organisms to MNP and DOM simultaneously 
[51], other studies incubated MNP in media containing 
DOM prior to being transferred to the exposure medium 
(i.e., no additional DOM in the exposure medium,  e.g. 
[47]). It is thus unclear, whether it was the DOM attached 
to the particles’ surface itself or the DOM in the media 
that led to the observed differences. Furthermore, the 
type of DOM used in experiments affects the composi-
tion and thickness of the formed ecocorona and may in 
turn influence observed outcomes [52, 53].

Meta-analyses are a tool for addressing exactly these 
kinds of questions, where the presence, direction and size 
of effects are unclear [54]. By aggregating data from sev-
eral studies in a quantitative way, meta-analyses aim to 
derive effect size estimates with reduced bias and greater 
precision (lower uncertainty) than estimates from single 
studies [55, 56].

We performed a meta-analysis to answer the question 
of how the presence of DOM alters the effects of MNP on 
Daphnia immobilization rates. Through a systematic lit-
erature search of experimental studies, we compared the 
effects of MNP with DOM to effects of the exact same 
particles without DOM. Based on the gathered data, we 
discuss the strength of evidence regarding mediating 
effects of DOM on MNP toxicity. In addition, we inves-
tigated whether the mediating effects depend on the type 
of DOM and the type of experimental approach used 
(either co-exposure with DOM or incubation prior to 
exposure).

Materials and methods
Literature search
We conducted a literature search for studies that inves-
tigated effects of MNP on immobilization rates (includ-
ing mortality) in water fleas of the genus Daphnia. The 
aim was to compile data from studies that met all of the 
following inclusion criteria: (1) experimental research 
(excluding books and reviews) published in English, (2) 
investigation of alterations of MNP effects due to DOM 
(i.e. studies contained at least one MNP treatment with 
DOM and one treatment with the same particles without 
DOM), (3) testing of water fleas of the genus Daphnia, 
and (4) absence of additional stressors during expo-
sure (e.g., chemicals). The final search was conducted 
in December 2022 on Web of Science (WoS) and Pub-
Med using the search string “((micro* OR nano*) AND 
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(plastic* OR particle*) OR microplastic OR nanoplastic) 
AND Daphnia AND (eco-corona OR ecocorona OR bio-
film OR humic acid OR DOC OR DOM OR fulvic acid 
OR lake water OR protein corona OR protein-corona OR 
proteincorona OR incub*)”. In parallel, we searched for 
review articles addressing effects of MNP on Daphnia or 
freshwater organisms as additional sources of literature. 
After removing duplicates, all titles and abstracts were 
screened. Studies that clearly did not follow the inclusion 
criteria were removed. All remaining studies were sub-
jected to full text screening and only those studies that 
met all selection criteria were kept for data extraction 
(see full text screening list in the supplementary online 
material).

Data extraction
The extracted data consist of immobilization and mor-
tality measurements, information on added DOM, 
characteristics of the used MNP, information on the 
test organisms and experimental parameters. As stud-
ies frequently did not distinguish between immobi-
lization (absence of movement after agitation; [26]) 
and mortality (absence of heartbeat in addition to 
the absence of movement), we will refer to both as 
immobilization.

We extracted immobilization rates (i.e., the number of 
immobile/mobile individuals or the proportion of immo-
bile individuals) for both the MNP treatment with DOM 
and the control treatment without DOM. Whenever pos-
sible, we extracted the rates directly from the text, data 
tables or raw data files provided in the supplementary 
online material. In cases where the data was instead pre-
sented in figures, the rates were extracted from the plots 
using the R package metaDigitise [57]. If daphnids were 
observed repeatedly over time, immobilization rates 
were extracted for the latest time point (one of either 
24, 48, 72 or 96 hours). If none of these time points were 
measured, we used the latest reported time point in the 
study. Immobilization rates for all other time points were 
neglected. Additionally, we extracted the number of rep-
licates (i.e., the number of independent test vessels) and 
the number of individuals per replicate (i.e., the number 
of daphnids per test vessel). These numbers were used 
to calculate the total number of immobile and mobile 
individuals if immobilization rates were reported as 
proportions.

The pairing of treatments using identical experimen-
tal setups and particles that differed only in the pres-
ence or absence of DOM allowed us to directly control 
for confounding by other MNP properties, different 
experimental parameters, and characteristics of the test 
organisms. As the main explanatory variables, we thus 
only noted (1) the type of DOM used in experiments 

(DOM_type; e.g., humic or fulvic acid, different types 
of lake water, etc.), (2) whether DOM was added dur-
ing exposure (DOM_conditioned: no) or whether the 
particles had instead been incubated in DOM-contain-
ing media prior to their use in experiments (i.e. parti-
cles were removed from the DOM-containing media 
prior to transfer to the exposure vessels without DOM; 
DOM_incubated: yes).

For completeness and to enable extended use of the 
data in the future, we extracted the following additional 
information from the studies if available: particle con-
centration (in mg per ml/l and particles per ml), MNP 
properties including polymer type, particle size (mean 
± standard deviation), particle shape (spherical, frag-
ment, fiber), the particles’ chemical surface modifica-
tion (e.g. carboxylation, amination) and surface charge 
(either positive or negative); characteristics of the test 
organisms including species, clone and age at the start 
of exposure; experimental conditions including tem-
perature, pH of the test medium, whether food was pro-
vided during exposure and its concentration, and the 
concentration of DOM added during MNP incubation 
or during exposure.

Statistical analysis
As a measure of effect size, we calculated log risk ratios 
(log (RR)) for immobilization. A multiple mixed meta 
regression model without intercept was fit to the data 
including the two factors DOM_type (humic acid, ful-
vic acid, type of lake water, etc.) and DOM_conditioned 
(either “yes” for treatments with MNP conditioned in 
DOM-containing media or “no” for treatments with 
DOM added during exposure) as moderators and a ran-
dom intercept for the unique publication identifier Publi-
cation ID consisting of the first author name and the year 
of publication:

Moderator effects, i.e., the effects of the two fixed 
factors, were investigated by fitting reduced models 
including only one of the moderators at a time and 
comparing these reduced models to the full model 
through likelihood ratio tests. In addition, the vari-
ance component attributed to Publication ID (sigma 
squared) was checked using profile likelihood plots 
to ensure that the component was successfully identi-
fied, indicated by the curve peaking at the maximum 
likelihood estimate. To see whether the two factors 
in the model adequately accounted for the heteroge-
neity among data points, a test for residual heteroge-
neity was conducted and the variance attributable to 
among-sample heterogeneity rather than sampling 
variance  (I2) was calculated.

log(RR) ∼ DOC_type + DOM_conditioned − 1+ (1|PublicationID)
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Based on the full model, an orchard plot was gener-
ated to visualize the average marginal effect estimates 
for each combination of moderator levels. In contrast 
to forest plots, orchard plots include individual effect 
size estimates, 95% confidence intervals (CI) and 95% 
prediction intervals.

To investigate potential publication bias visually, 
standard errors were plotted against residuals of the full 
model in a funnel plot. In general, skewed, asymmet-
ric funnel plots or funnel plots with apparent gaps can 
indicate potential publication bias (for a more detailed 
explanation and limitations see [58]). In the funnel plot, 
we expected that selective publishing would result in a 
clear shift of data to higher effect sizes in studies with 
high standard errors, suggesting that studies with low 
power were preferentially published when observed 
effects were large.

All analyses were done in R version 4.3.1 (R Core 
Team, 2023). The metafor package version 4.2 [59] was 
used for effect size calculation, fitting meta regression 

models and investigating publication bias. The orchaRd 
2.0 package [58] was used for creating the orchard plot 
and calculating  I2.

Results
Literature search and data extraction
The literature search resulted in 955 publications, of 
which 925 failed to meet at least one of the selection cri-
teria. After full text screening of the remaining 30 publi-
cations, 17 studies were excluded either because they did 
not fulfill all the selection criteria or data extraction was 
not possible. The remaining 13 publications were used 
for data extraction. In total, we extracted 305 data points 
(Fig. 1). We grouped the types of DOM used in the stud-
ies into seven main categories: metabolites excreted from 
Daphnia (2 studies, 21 data points), humic acid (4 stud-
ies, 43 data points), fulvic acid (2 studies, 24 data points), 
commercially bought natural organic matter (1 study, 
6 data points), stream water (3 studies, 34 data points), 
lake water (3 studies, 128 data points) and wastewater (4 

Fig. 1 PRISMA flow diagram illustrating the results from the systematic literature search and stepwise exclusion of studies not fulfilling defined 
selection criteria. MNP: micro- and nanoplastic particles. DOM: dissolved organic matter
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studies, 49 data points). In seven of the studies, the MNP 
were incubated in the respective DOM type prior to 
exposure (105 data points). In the other six studies, DOM 
was added during exposure or exposure was conducted 
in water sampled from natural environments (200 data 
points). All included studies tested the species Daphnia 
magna (for a full overview of experimental parameters 
covered in the studies see raw data in the supplementary 
online material).

Effects of DOM type and conditioning on immobilization 
rates
In the full model, moderators had a significant effect on 
immobilization risk (test of moderators:  QM = 17.33, 
df = 8, p = 0.023) indicating that at least one of them 
accounted for differences in effects across samples. A 
comparison of full and reduced models showed that 

DOM type was more important for the model fit (com-
parison of the full versus the reduced model without 
factor DOM_type: LR = 12.47, p = 0.052) than whether 
the particles had been conditioned prior to their use in 
exposure experiments (comparison of the full versus the 
reduced model without factor DOM_conditioned: LR = 
0.08, p = 0.78). A reduction in immobilization risk was 
observed when DOM was added in the form of humic 
acid (log(RR): -0.58 (CI: -1.03, -0.14), RR: 0.56 (CI: 0.36, 
0.87), z = -2.56, p = 0.01) or lake water during expo-
sure (log(RR): -0.60 (CI: -1.05, -0.15), RR: 0.55 (CI: 0.35, 
0.86), z = -2.62, p = 0.009), and to a lesser degree when 
MNP were incubated in wastewater (log(RR): -0.28 (CI: 
-0.88, 0.32), RR: 0.76 (CI: 0.41, 1.37), z = -0.93, p = 0.35) 
or stream water (log(RR): -0.21 (CI: -0.81, 0.40), RR: 0.81 
(CI: 0.44, 1.49), z = -0.67, p = 0.50) prior to exposure 

Fig. 2 Mean treatment effects of different dissolved organic matter (DOM) types from the selected studies. A: effects shown 
for micro- and nanoplastic particles (MNP) conditioned in DOM containing medium; B: effects of MNP with DOM added to the medium 
during exposure; Metabolites: medium containing metabolites excreted by Daphnia; log (RR): log risk ratio; thicker black lines show 95% confidence 
intervals; narrow lines show prediction intervals; asterisks indicate significant moderation of MNP effects (p < 0.05). Point sizes reflect inverse 
standard errors
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(Fig.  2). Changes in immobilization risks due to DOM 
were below 15% in all other treatments.

In general, we found high variance in the data in all 
groups. In addition, while DOM type and experimental 
approach (DOM_conditioned) explained part of the vari-
ance in the data, the model left significant residual het-
erogeneity  (QM = 680.25, df = 297, p < 0.0001) indicating 
that other factors not included in our analysis addition-
ally contribute to the differences. In accordance with this, 
97% of the variance among data points can be attributed 
to sample heterogeneity  (I2 = 0.97) and only 3% are esti-
mated to result from sampling variance.

Publication bias
A visual inspection of the funnel plot did not show severe 
deviations from symmetry, but showed a small gap in 
data points on the right for medium powered studies (see 
gap on the right at medium standard errors in Fig. 3).

Discussion
Our meta-analysis shows that immobilization of Daph-
nia by MNP can be alleviated by DOM. While it has 
been argued that the reduction in negative effects in 
the presence of DOM might be attributed to the forma-
tion of an ecocorona on the MNP surface alone (e.g., 
[22, 60]), our data indicate that DOM present in the 
media during exposure may contribute additionally 

to the observed mitigating effects. Furthermore, the 
compiled data suggest that moderating effects of DOM 
depend on the type of DOM used.

DOM is known to alleviate effects of various pollut-
ants in Daphnia spp. For example, humic acid has been 
shown to attenuate negative effects of soluble sub-
stances (e.g.,[31, 61, 62]) including pesticides (e.g., [63]), 
and various particulate pollutants (e.g., [64]). For exam-
ple, natural organic matter has been shown to reduce 
the toxicity of perfluorooctane sulfonate (PFOS, [65]) 
and heavy metals (e.g., [66, 67]), among others. In addi-
tion, beneficial impacts of DOM on effects imposed by 
MNP and other pollutants have also been demonstrated 
in several other aquatic organisms. Saavedra et al. [34] 
for example tested the toxicity of MNP to the rotifer 
Brachionus calyciflorus and larvae of Themnocephalus 
platyurus and found lowered effects for ecocorona-
coated compared to pristine MNP. Similarly, ameliorat-
ing effects of DOM have, among others, been found for 
MNP-induced oxidative stress responses (ROS produc-
tion) in algae and fish [40, 68], copper-induced mortal-
ity in freshwater mussels [33], and for pesticide-induced 
mortality in the freshwater mysid shrimp Americamysis 
bahia [69].

One mechanism by which DOM can reduce toxic 
effects is its ability to bind pollutants [70]. For instance, 
humic acid and, to a lesser extent, fulvic acid bind 

Fig. 3 Standard errors of data points from the studies included in the meta-analysis plotted against residual log risk ratios. Different colors represent 
data points extracted from different publications; the grey shaded area represents the 95 % pseudo confidence interval



Page 8 of 12Salomon et al. Microplastics and Nanoplastics            (2024) 4:11 

hydrophobic organic pollutants including pesticides 
[71–73], and DOM binds pesticides and metal ions 
[74–76]. In contact with particulate pollutants, DOM 
leads to ecocorona formation (e.g., [39, 42]) altering the 
particles’ surface characteristics [25, 40, 41] and chang-
ing interactions with tissues and cells [5, 6]. Changes 
in physico-chemical properties also lead to altered col-
loidal interactions [41] and altered aggregation in the 
test media [74, 77, 78]. Particle aggregation in turn 
affects the particles’ transport behavior, can lead to 
increased sinking velocities and consequently lower the 
availability of particulate pollutants in the water col-
umn [42, 78–80]. In consequence, particle aggregation 
can alter MNP toxicity, for instance by altering uptake 
rates [49, 77, 81]. Furthermore, DOM attached to the 
particles may add nutritional value to the particles and 
thus partly reduce food dilution effects [82]. Neverthe-
less, all these effects of DOM on particle behavior and 
properties cannot explain sufficiently why moderating 
effects in our dataset were stronger in co-exposure as 
compared to MNP incubation setups, as these effects 
should show up in both setups similarly.

A potential alternative explanation for the strong 
attenuating effects of humic acid and lake water in co-
exposure experiments may be that DOM in the media 
generally contributes to the well-being of the daphnids, 
thus making them more resilient to stressors. In gen-
eral, stressed Daphnia are more sensitive towards addi-
tional stressors [83, 84] while beneficial environments 
help daphnids become more resilient [85, 86] (for a 
conceptual discussion of stress addition, see [87]). Sup-
plementary DOM for instance may serve as a nutrient 
source for phytoplankton, indirectly leading to better 
food supply for the daphnids [88]. In addition, DOM can 
increase food supply through the microbial loop in par-
ticular when algal food becomes limited (e.g., [89, 90]). 
Second, similar to other organisms, daphnids may ben-
efit from the direct uptake of DOM leading to improved 
intestinal health, increased reproduction or increased 
growth induced by mild chemical stress responses [91, 
92]. In contrast to these findings however, other studies 
have demonstrated adverse effects of DOM on Daphnia 
[93–95] and on other invertebrate freshwater species 
(e.g., [96]), indicating that the processes and mechanisms 
in natural waters are likely more complex and not under-
stood well enough yet.

Among the types of DOM used in the screened lit-
erature, humic acid and lake water added during expo-
sure had the strongest mitigating effects, decreasing 
the risk of immobilization caused by MNP by almost 
50% (RR = 0.56 and 0.55, respectively). Whether these 
effect sizes are comparable to effects in natural environ-
ments depends, among other factors, on how realistic the 

concentrations of DOM applied in experiments were. In 
the studies included in our meta-analysis that reported 
DOM concentrations, test concentrations ranged from 
1 to 50 mg  l-1 (see raw data in the supplementary online 
material). Similar ranges have been reported for natural 
aquatic systems, spanning for instance from 0.1 to 322 
mg  l−1 in a dataset of measurements of dissolved organic 
carbon (DOC) from 7,500 lakes [97] (see also [88]). It is 
therefore likely that attenuating effects of DOM on MNP 
toxicity can occur in a similar way in natural habitats.

Although the compiled dataset indicates that the mere 
conditioning of particles in DOM-containing media 
has lower moderating effects on immobilization risks 
than co-exposure with DOM, and that effect sizes differ 
between different DOM types, the dataset also has some 
important limitations. The types of DOM tested in condi-
tioning experiments were different from the types tested 
in co-exposure experiments (except for one data point 
from an experiment using lake water-conditioned MNP). 
Due to this limited overlap, it is difficult to disentangle 
the effects of DOM type and experimental approach at 
this point. However, the observed patterns can serve as 
valuable hypotheses that can be easily validated (or dis-
proved) in experiments or when more studies become 
available in the future.

Publication bias can lead to wrong effect size estimates 
derived from meta-analyses. Bias arises when some effect 
sizes are published selectively, e.g., when only significant 
outcomes are published or when confirmatory results are 
preferentially published [98]. A second factor that can 
lead to wrong effect size estimates is study (or sample) 
heterogeneity [99, 100]. Significant heterogeneity indi-
cates that the variance among data points cannot be suffi-
ciently explained by sampling variance, but instead likely 
results from measured effects not being derived from a 
true common effect. The funnel plot from our meta-
analysis shows a slight gap of data points on the side of 
increased immobilization risk in the presence of DOM 
and the full model showed significant residual heteroge-
neity. A potential reason for the gap of data points could 
be the preferential publication of low-powered stud-
ies where MNP effects are mitigated in the presence of 
DOM, while low-powered studies where the presence of 
DOM increased negative effects of MNP were published 
less often. In combination with the high residual hetero-
geneity, another likely reason for these patterns is how-
ever that the effect sizes in our dataset are moderated 
by additional factors not accounted for in our analysis 
[101]. For example, it is possible that the effect of DOM 
on immobilization caused by MNP is further moderated 
by experimental temperature, food availability during 
exposure, different MNP concentrations, different con-
centrations of DOM or other experimental parameters 
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and MNP properties. Although we accounted for con-
founding by pairing measurements from treatments that 
differed solely in DOM presence/absence while keeping 
all other parameters the same, we cannot rule out inter-
action effects. For example, it might be possible that the 
strength of the mediating effect of DOM on MNP toxic-
ity differs for different polymer types, experimental tem-
peratures, or any other parameter.

Although Daphnia is among the most frequently 
used organisms in ecotoxicological research on MNP 
effects [28, 29]), we found only 13 studies (published 
until December 2022) that met our selection criteria and 
allowed for the extraction of effect size data. For the suc-
cessful inclusion in future meta-analyses, studies investi-
gating the moderating effects of DOM on MNP toxicity 
need to: (1) include an appropriate control treatment 
which differs only in the absence of DOM while all other 
parameters are kept the same as in the DOM treatment, 
(2) either report measurement results as means together 
with an uncertainty measure (standard deviation, stand-
ard error or confidence interval) or provide the complete 
raw data in the supplementary online material or else-
where and (3) clearly report the number of replicates 
(i.e., number of independent test vials) and the number of 
individuals tested per replicates for all treatments.

In general, we think that further research is needed to 
disentangle the effects of DOM attached to the parti-
cles and effects of DOM present in the exposure media 
on MNP toxicity in Daphnia. This includes addressing 
in particular the mechanisms that lead to observed dif-
ferences among different approaches (MNP incubation 
versus co-exposure) and DOM types. Including a clear 
characterization and validation of the ecocorona formed 
by different DOM types and including DOM treatments 
in the absence of MNP in the experimental setup can fur-
ther help deepen our understanding of the processes and 
effects that are to be expected in natural environments 
and thus increase the reliability of MNP risk assessments 
in the future.

Conclusions
In the present meta-analysis, we synthesized data from 13 
studies that investigated the effects of ecocorona formation 
and DOM on MNP-induced immobilization risk in Daph-
nia spp. We showed that the mere conditioning of particles 
in DOM-containing media can moderate MNP toxicity, but 
the presence of DOM in the test media during exposure 
appears to be another important predictor for the observed 
attenuation of negative outcomes. Based on our results and 
evidence from the literature on other stressors, we hypoth-
esize that DOM and in particular humic acid mitigates neg-
ative effects of MNP by either (1) reducing bioavailability 

or (2) making daphnids more resilient to stressors in gen-
eral. Additional experiments are needed to challenge these 
hypotheses and disentangle the effects of ecocorona for-
mation and the presence of DOM in the media, and to 
understand how effects of DOM on particle behavior in 
the medium translate into reduced effects on an organismic 
level. Such experiments could for example directly compare 
the impact of DOM-conditioning with the impact of add-
ing the same type of DOM to the media during MNP expo-
sure, or investigate attenuating effects of DOM on negative 
effects imposed by other stressors such as chemical or par-
ticulate pollutants or heat stress.
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