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Abstract 

This research project investigates the potential of machine learning for the analysis of microplastic Raman spectra in 
environmental samples. Based on a data set of > 64,000 Raman spectra (10.7% polymer spectra) from 47 environmen-
tal or waste water samples, two methods of deep learning (one single model and one model per class) with the Recti-
fied Linear Unit function (ReLU) (hidden layer) as the activation function and the sigmoid function as the output layer 
were evaluated and compared to human-only annotation. Based on the one-model-per-class algorithm, an approach 
for human–machine teaming was developed. This method makes it possible to analyze microplastic (polyethylene, 
polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate) spectra with high recall (≥ 99.4%) 
and precision (≥ 97.1%). Compared to human-only spectra annotation, the human–machine teaming reduces the 
researchers’ time required per sample from several hours to less than one hour.
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Introduction
Microplastics as contaminants have been intensively 
investigated. However, although microplastics were first 
discovered in the 1970s [1] and the number of studies 
dealing with microplastics has increased greatly since 
2010 [2], much is still unknown. One of the major con-
cerns is the complexity of microplastics analysis. Apart 
from sampling, sample purification, and the problem of 
contamination mitigation, the detection of MP is still 
a challenge. In general, there are two methods for the 
chemical analysis of microplastics [1]: thermoanalyti-
cal and spectroscopic. Thermoanalytical methods such 
as pyrolysis–gas chromatography-mass spectroscopy 

(GC–MS) and thermal extraction-desorption (TED)-
GC–MS provide information about microplastic masses. 
They are comparatively fast and are less prone to con-
tamination than spectroscopic approaches. Although 
they yield information about the concentration and 
chemical composition of microplastics (mainly the type 
of polymer), they are not suitable for determining their 
size [3, 4]. This information is crucial to the risk assess-
ment of microplastics, as (eco-)toxicological studies 
suggest that the toxicity of microplastics increases with 
decreasing diameter [5]. Therefore, spectroscopic meth-
ods are needed. Using spectroscopic methods (predomi-
nantly µ-Raman and (µ)-Fourier-transfrom infrared 
(FTIR) spectroscopy), microplastic particles and fib-
ers are analyzed on an analysis filter. Usually, elaborate 
sample preparation is necessary before detection (oxi-
dative or enzymatic digestion, density separation). The 
results are given in item concentrations [3]. Often only a 
few selected particles are analyzed [6, 7]. However, this 
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is not sufficient, particularly because – even with accu-
rate sample preparation and mitigation of contamina-
tion – there are usually numerous non-plastic particles 
on a filter. It is necessary to analyze several thousand 
particles per sample to achieve a representative result 
[8, 9]. Although automatic particle recognition is now 
available from open-source programs [10] or is incor-
porated into the instrument software [11], detection is 
still time-consuming, so the measurement settings are 
chosen as a compromise between spectra quality and the 
time required for measurement. This leads to weak spec-
tra quality (including a lower signal-to-noise ratio) [12]. 
Apart from this, the spectra quality is influenced by the 
fact that microplastics are aged by environmental influ-
ences [13] or contain different concentrations of additives 
such as plasticizers or pigments. Fluorescence caused by 
biological-organic matrix debris is a problem, especially 
for µ-Raman spectroscopy [14]. In addition, particle size 
influences the spectra quality. As a rule, smaller parti-
cles generate lower signal intensity than larger ones. But 
because the spectra quality also depends on the distance 
between the particle and the objective (z-hub), the spec-
tra quality also decreases for larger particles, because 
the z-hub is usually optimized for smaller particles [15]. 
Hence the analysis and evaluation of the spectra are 
time-consuming and error-prone, so the automatization 
of spectra analysis using machine-learning algorithms is 
one of the major tasks of method development.

A handful of studies have proven the potential of 
machine learning for microplastics FTIR spectra with 
a database taken from environmental samples; papers 
such as Kedzierski et al. [16] have presented a machine-
learning algorithm for analyses of FTIR-attenuated total 
reflection (ATR) spectra. Using the machine-learning 
method of k-nearest neighbor classification, they trained 
their algorithm on a database of 969 spectra of marine 
microplastics. The resulting algorithm is suitable for 
common polymers such as polyethylene (PE), polypro-
pylene (PP), polyvinyl chloride (PVC), polystyrene (PS), 
and others. An evaluation was performed with 4000 
spectra. In 90.5% the classification was correct. When 
a human reevaluated the results, this value increased to 
97%. Hufnagl et  al. [17] also applied machine learning 
to focal plane array-µFTIR spectra. With model-based 
machine learning based on random decision forests and 
Monte Carlo cross-validation for sensitivity, specificity, 
and precision, they presented an approach for the clas-
sification of 20 polymers. Spectra from environmental 
samples served as the data set. The sensitivity of the algo-
rithm ranged from 0.925 to 1, the specificity from 0.9984 
to 1, and the precision from 0.9563 to 0.9965.

Although there are some examples of machine learning 
involving FTIR spectra, to the authors’ knowledge only a 

few studies have presented machine-learning approaches 
using Raman spectra from microplastics. Unfortunately, 
so far spectra from "artificial" microplastics have served 
as the data basis:

Lei et al. [18] compiled their data basis for machine-
learning algorithms using spectra from purchased 
microplastic powders or microplastics created 
from purchased macroplastic samples. They trans-
ferred the microplastics onto microscope slides 
and conducted Raman analysis by mapping. This 
yielded > 95% classification accuracy using open-
source random forest, k-nearest neighbors, and 
multi-layer perceptron algorithms. These results 
show the potential of machine-learning applications 
in microplastics detection. However, the Raman set-
tings applied by Lei et al., especially the mapping of 
particles, are not comparable to the settings neces-
sary to analyze a large number of particles from envi-
ronmental samples. Apart from this, the spectra from 
purchased particles or manufactured microplastics 
are usually of high quality compared to spectra from 
environmentally aged microplastics.
Like Lei et al., Luo et al. [19] used purchased micro-
plastics to generate database spectra. They suspended 
different concentrations of microplastics in different 
aquatic environmental media (such as rainwater and 
surface water) and added a surfactant. Afterwards, 
the suspensions were filtered on an analysis filter for 
Raman acquisition. The authors provided no infor-
mation about the duration of the mixing of micro-
plastics with the media, but it can be assumed that 
the conditions were not realistic enough to simulate 
microplastic aging processes or the growth of bio-
films, etc. Furthermore, microplastic particles in 
reality have a variety of chemical composition (e.g. 
plasticisers, dyes, flame retardants, copolymers). 
With this method, Luo et al. compiled a database of 
3675 Raman spectra for machine learning. Using a 
coupled sparse autoencoder and a softmax classifier 
framework for PET, PVC, PP, PS, polycarbonate, and 
PE, Luo et al. achieved a test accuracy of 99.1%.

As mentioned above, the quality of Raman spectra for 
microplastics in environmental samples depends on sev-
eral factors; it is sometimes poor due to environmental 
and analytical influences. Therefore, the available studies 
can only be used to a limited extent to draw conclusions 
about the usability of machine learning for Raman spec-
tra alignment.

This study aims to contribute a further approach to the 
application of machine-learning algorithms to Raman-
spectra analysis for purposes of microplastics detection. 
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The motivation of this study is to develop a reliable 
method with the highest possible degree of accuracy 
that automates the process of spectrum identification as 
much as possible, thereby reducing the effort required 
by researchers. To this end, machine-learning algo-
rithms were trained using > 60,000 spectra, mainly from 
microplastic analysis in industrial wastewater. Different 
algorithms and human–machine teaming were tested 
for recall and precision, to create an applicable tool for 
microplastics analysis.

Methods
Different approaches of spectra identification by machine 
learning were compared with each other and with human 
annotation. The scheme of the methods is shown in the 
Fig. 1.

Data set
Source of the data set
The data set used in this study was generated in the 
research projects EmiStop [20], Eintrag MiPa (2022—
2025), and an investigation of microplastics in two Ger-
man rivers [21]. The set includes data from 47 analysis 
filters. The samples were taken from six industrial waste-
water treatment plants and the Main and Nidda rivers in 
Germany. Sampling was conducted from January 2021 
to April 2022. Sampling, sample preparation, and analy-
sis by µ-Raman spectroscopy were conducted according 
to the methods used in Weber and Kerpen B [21], Weber 
and Kerpen A [11], and Barkmann-Metaj et  al. [22]: 
After volume-reduced sampling, the samples were pre-
pared for analysis. Biological-organic matrix components 
were digested by hydrogen peroxide (323.15 K, 24 h) and 
sodium hypochlorite (room temperature, 6 d). Inorganic 
matrix components were separated by density separation 
in sodium polytungstate (ρ = 1700  kg/m3). If necessary, 
subsamples were taken from a homogeneously stirred 
2-propanol suspension according to Wolff et  al. [23]. 
Where possible, each sampling site was sampled multi-
ple times (n = 3). µ-Raman spectroscopy was conducted 
using a spectroscope (DXR2xi, Thermo Fisher Scien-
tific Inc., Waltham, MA, USA) with a front-illuminated 
EMCCD detector. For analyses, the electron multiplier 
(EM) was turned off. All particles and fibers > 20 µm on 
the analysis filter (silicon) were detected using the auto-
matic particle recognition feature of the instrumental 
software OMNICxi (v.2.3, Thermo Fisher Scientific Inc., 
Waltham, MA, USA). Each detected particle was ana-
lyzed with a laser wavelength of 785 nm, a laser power of 
8 mW, and a total exposure time of 6.75 s (three repeti-
tions of 2.25 s each). The objective used had a 20 × mag-
nification and a numerical aperture of 0.45. Spectra were 

recorded in the range of 50—3300  cm−1 and with a reso-
lution of 5  cm−1.

Some of the samples were analyzed three times (ali-
quots), so the 47 samples include several multiple deter-
minations. However, due to limitations in the laboratory 
and instrument utilization capacities, it was not possible 
to perform the time-consuming analysis of three subsam-
ples for each sample in the data set presented. In addi-
tion, errors in sampling, sample loss in the laboratory, 
and data loss due to corrupt files meant that not all sam-
ples in this data set represent multiple determinations of 
a sampling point.

In total, 64,301 spectra were generated and used as 
the data set. On average, each sample contained 1,368 
spectra.

The data set is available as electronic supplementary 
material.

Human annotation (first annotation)
The samples were analyzed and evaluated for the first 
time in the course of the routine analysis of the research 
projects. The spectra were presorted using the software 
OMNICxi (v2.3, Thermo Fisher Scientific Inc., Waltham, 
MA, USA) being compared to spectra from the reference 
library P/N L60001 (S.T. Japan Europe GmbH, Cologne, 
Germany) using correlation. The software was set to eval-
uate the Raman shift regions 600—950  cm−1 and 1000—
1800   cm−1 (fingerprint region) for comparison with the 
library. OMNICxi is not a software specifically developed 
for microplastics analysis. As the results were not suffi-
cient (large numbers of false positives and false negatives, 
with an estimated 30—50% of false negatives), each spec-
trum of a sample was evaluated by a domain expert after 
the presorting. There were no fixed criteria for the clas-
sification of a spectrum. The process of evaluation took 
several hours per sample, depending on the number of 
spectra per sample and the percentage of microplastics. 
The domain experts (n = 3) reported that the process 
required a high degree of concentration. Thus, the pro-
cess was likely prone to error due to a lack of concen-
tration, the domain experts’ variations in expertise, and 
subjective decisions. These data served as the basis for 
the present study.

Improvements in human annotation and the data set (second 
annotation)
To improve the data set and generate a reliable ground 
truth for deep learning, objective criteria for the classi-
fication of microplastics (polymers PE, PP, PS, PVC, and 
PET) were defined. All peaks used for identification must 
be reliably distinguishable from baseline and noise (suffi-
cient signal-to-noise ratio). Since the criteria were devel-
oped for human annotation, no fixed threshold for the 
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signal-to-noise ratio can be given (see Table 1 and Fig. 2). 
These polymers were found most frequently in all sam-
ples of the data set (see the section entitled "Microplastic 

data set characterization (ground truth)"). In addition, 
other studies have shown that they are predominant in 
environmental samples [24–26]. This correlates with the 

Fig. 1 Schematic overview of the approach and the methods used
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production volume of polymers [27]. Polyamides were 
not included here, because they are not resistant to the 
sample purification method [28].

In the next step, all spectra that were classified as 
microplastics in the first evaluation were re-evaluated 
by one domain expert according to the criteria (second 
annotation). For this purpose, all Raman spectra were 
isolated from the analysis data (file format: mapx) and 
submitted to a domain expert for re-annotation in a 

custom-programmed user interface (GUI). In the GUI, 
the domain expert can select classes to annotate. To aid 
the decision, marking lines were placed where peaks 
were expected for each class (see Fig.  2). The resulting 
data were used for the machine-learning models (see the 
section entitled "Machine learning"). The results of this 
second annotation were used as the ground truth for the 
deep-learning experiments.

Table 1 Identification criteria and necessary peaks for polymer classification by domain experts

Polymer Necessary peaks for 
identification /  cm−1

Further identification criteria

PE 1052, 1120, 1295, 1440 If three peaks are unique, one can be shifted. If four peaks match, they do not require the highest intensity. Two 
out of four peaks can be wider if the position is correct. The peak at 1440  cm−1 can be "smeared" and shifted.

PET 1100, 1278, 1620, 1735 The peaks at 1735  cm−1 (which are "hilly" in parts) and 1620  cm−1 (prominent) are necessary for identification. 
The peaks at 1100  cm−1 and 1278  cm−1 may not be present where there is a low signal-to-noise ratio.

PP 785, 820, 1145, 1328, 1458 The peaks at 785 and 820 are necessary for identification. The peak at 785 is usually higher than the peak at 
820 cm −1. A slight shift of the peaks is possible. The peaks at 1145  cm−1 and 1328  cm−1 may not be present 
where there is a low signal-to-noise ratio.

PS 990, 1020, 1328, 1607 The peaks at 990  cm−1 and 1020  cm−1 are necessary for identification. The peak at 1020  cm−1 is only marginally 
visible where there is a low signal-to-noise ratio. In this case, the other peaks are necessary for identification.

PVC 612, 663, 1435 The peaks at 612  cm−1 and 663  cm−1 are necessary for identification. The peak at 612  cm−1 is usually higher. 
Both peaks are broad and they converge.

Fig. 2 Examples of high quality PE, PET, PP, PS, and PVC spectra with marked peak positions
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Microplastics data set characterization (ground truth)
Based on the first annotation (human annotation), the 
average size distribution of the microplastics was deter-
mined. Because the second annotation did not aim to 
determine the particle size, this was the only data avail-
able for this statistic. Over 60% of the microplastics 
had a diameter between 20  µm and 50  µm. In the sec-
ond annotation (using the criteria listed in Table  1), 
the domain expert classified 6,864 as polymeric (10.7%, 
classes 1—5) and 57,437 as class 0. PE, PS, and PVC were 
most frequently detected, followed by PP and PET (see 
Fig. 3). The results of the second annotation served as the 
ground truth for this study.

Machine learning
All code was written in Python using Jupyter Notebook 
(https:// jupyt er. org). Jupyter Notebook is a web-based 
interactive computing environment for creating note-
book documents. The project can be used to develop 
open-source software, open standards, and services for 
interactive computing across multiple programming lan-
guages. The code is available as electronic supplementary 
material.

Definitions and aim of the machine‑learning algorithms
The machine-learning algorithm should result in a high 
recall (as many microplastics as possible being identified) 
with a very high rate of precision (no false positive identi-
fications) at the same time:

Precision: False positives lead to an overestimation of 
microplastics concentrations, and therefore to issues 
such as the overestimation of waste water treatment 
plants as emission pathways of MP or the impos-

sibility of source allocation in industrial production 
plants.
Recall: If microplastics are missed, a false-low result 
is generated. As a rule, this only leads to significant 
erroneous detection in plastics classes that account 
for a small percentage of the total microplastics con-
centration in a sample. However, frequent plastics 
are also underreported. This is because a minimum 
number of particles per analysis and class must be 
exceeded to be significantly above the blank value of 
the analysis procedure. While frequently occurring 
classes (such as PVC in a PVC manufacturing plant) 
usually well exceed this threshold, a large number of 
false negatives among the rarer classes can quickly 
lead to a shortfall. To reduce incidental underreport-
ing in rare classes, good scientific practice recom-
mends the analysis of three independent samples per 
sampling point and three subsamples per sample.

Deep learning (one single model)
The input values for the single model implemented using 
Tensorflow were gradients of the Raman shift. Figure  4 
shows a sample frequency spectrum with the expected 
peaks for PE (upper subplot A). The lower subplots (B1 
and B2) illustrate the gradients. The domain experts indi-
cated a reasonable range between 562 and 1784. This cor-
responds to the range highlighted in green, which was 
selected as input for the deep-learning network.

Since the Raman spectrometer used here stores only 
every other value between 562  cm−1 and 1784  cm−1, this 
yielded 611 ( = 1784−562

2
 ) as the number of inputs to the 

neural network. Figure  5 summarizes the single model. 
The model has 611 input nodes, 128 fully connected 

Fig. 3 Size (A) and polymer distribution (B) of microplastics in the data set

https://jupyter.org
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hidden nodes, and 6 output nodes for the 0 class and each 
class of interest. The ReLU function (hidden layer) and 
the sigmoid function (output layer) were used as activa-
tion functions. Each output node yielded a value between 

0 and 1 as a result of the sigmoid activation function. A 
value of 1 stands for a safe decision for the specific class, 
and 0 is against it. 0.5 was chosen as a decision limit for 
a class. L2 regularization (λ = 0.001) and a dropout layer 

Fig. 4 For one single model, the gradient of the Raman shift (562—1784  cm−1) was included (B2). For one model per class (PE in this case) sections 
around the peaks were extracted (B2)

Fig. 5 Deep-learning model for all classes, with 128 fully connected hidden nodes and six outputs
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(0.5) prevented overfitting. We trained the model with a 
single batch, 1500 epochs, weighted with respect to the 
number of instances per class. 47 models were trained 
to evaluate the deep-learning network that models all 
classes simultaneously. When training a model, the sam-
ple to be tested is always omitted. As there were several 
multiple determinations of one sample in the data set, 
these samples would have been omitted as well and were 
therefore excluded from the training. The training was 
done on the remaining samples, to ensure that the train-
ing was done only with samples that were independent 
of each other. This procedure enabled us to draw con-
clusions about the performance beyond foreign samples 
and was taken into account for the one-model-per-class 
method as well (see the section entitled "Deep learning 
(one model per class)").

Deep learning (one model per class)
Not all gradients between 562   cm−1 and 1784   cm−1 
were used as input to the models. Only sections around 
the peaks named by domain experts (see Table  1) were 
used. The middle subplot of Fig. 4 illustrates how areas of 
width 71 were extracted around each expected peak. This 
led to 284 (= 4 × 71) inputs for the PE model because of 
the four expected peaks. The number of inputs was dif-
ferent for each class: The PE and PET models had 284 
inputs, while PS, and PP had 355 (= 5 × 71) inputs each. 
Lastly, PVC had only 3 important peaks according to 
domain experts, resulting in 213 (= 3 × 71) inputs. Fig-
ure 6 is an exemplary summary of the model for PE. The 

model implemented using Tensorflow had 284 input 
nodes, 32 fully connected hidden nodes, and one output 
node for the class of interest. We used the ReLU function 
(hidden layer) and the sigmoid function (output layer) as 
activation functions. The output node of a model yielded 
a value between 0 and 1 as a result of the sigmoid activa-
tion function. A value of 1 stands for a safe decision for 
the class and 0 is against it. For evaluation of the stan-
dalone deep-learning method, the decision threshold was 
set at 0.5. For a combination of deep leaning and human 
annotation (see the section entitled "Human–machine 
teaming"), the threshold was reduced to 0.1. L2 regu-
larization (λ = 0.001) and a dropout layer (0.5) prevented 
overfitting. We trained the model with a single batch, 
1500 epochs, weighted with respect to the number of 
instances per class.

The system was set as a multi-label-classification, 
where multiple labels were to predicted for each instance. 
When spectra were classified in more than one class with 
a value > 0.5, both results were accepted. This practice 
is legitimate because a microplastic particle may have 
more than one polymer spectrum. This may be due to the 
composite material from which the microplastic parti-
cle originates, or because agglomeration of microplastic 
particles cannot be completely prevented despite careful 
sample preparation. As these cases are very rare, they do 
not have a significant impact on the results.

Fig. 6 Deep-learning model for the PE class with 284 inputs, 32 fully connected hidden nodes, and one output
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Human–machine teaming
In this section, we present an approach that combines 
the methods of human annotation and deep learning 
(one model per class) to achieve better results. The 
results of human annotation show that it is trustwor-
thy (see results section). However, in practice, the 
human error rate increases when the number of spec-
tra examined is very large.

Therefore, the one model per class algorithm was 
applied as a machine preprocessing in a first step before 
a domain expert validated the results in a second step.. 
The decision threshold of the algorithmwas reduced 
from 0.5 to 0.1. As a result, the recall was artificially 
increased. This was necessary, because as shown in 
Table 4, for e.g., PVC, the recall is only about 84.4%. at 
a threshold of 0.5. 15.6% of the positive instances are 
filtered out and lead to worse results. By decreasing 
the threshold to 0.1, all true positives should be recog-
nized as polymers by the network. Table  4 shows that 
the recall for PVC increases to 99.8%. At the same time, 
however, more false positives get be misclassified as 
polymers. However, the precision decreases at the same 
point. Therefore, in the second step, a domain expert 
evaluated the results of the network by rejecting false 
positives and thereby increasing the precision to the 
level of human annotation. This was done by sorting the 
results of the machine learning algorithm by polymer 
class and probability (value between 0 and 1). In a devel-
opment of the GUI used for the second human annota-
tion, these results were presented to the domain expert. 
The expert decided whether the classification of the net-
work was correct or incorrect.

Results and discussion
Human annotation (first annotation)
Table  2 summarizes the results of the human annotation 
method (the method applied before the developments of 
this study). The annotation was compared to the ground 
truth (result of the second human annotation). The false 
negatives indicate how many instances of each class were 
missed by the domain experts. Compared to the real num-
ber of positives, the values were high for all classes except 

PVC. It was only for PVC that the results were acceptable. 
The values for PET and PP were particularly high. The 
results of the false negatives were directly reflected in the 
recall, which was high for PVC, in the mid-range for PE and 
PS, and low for PET and PP. If the spectra of these parti-
cles are evaluated manually by identifying significant peaks 
for a substance in the spectra of a measuring point on the 
particle being analyzed, the evaluation is subject to various 
sources of error: A. In borderline cases, the domain expert 
subjectively decides on the class allocation. B. It takes sev-
eral hours to analyze a sample’s 1000—3000 spectra. Loss 
of concentration increases the risk of false positives and 
false negatives. C. All polymer classes are analyzed simul-
taneously so that a sample only requires processing once. 
This can also lead to false assignments due to concentra-
tion problems. D. For PP and PET, there is a further expla-
nation: Several instances of PET and PP were measured on 
fibers, with several measuring spots. The domain experts 
identified the fibers as a class only once, meaning many 
points on the fiber were ignored in the classification.

There were only a few false positives, resulting in a high 
rate of precision, sufficient for practical applications. 
However, the low recall means that many instances were 
undetected and thus were not taken into account, which 
could influence countermeasures to reduce microplastics 
emissions.

Deep learning (one single model)
Comparing the results from a single deep-learning model 
to the results of human annotation (see results in the sec-
tion entitled "Human Annotation (first annotation)") in 
Table  3, we see a higher recall, except for the PVC class. 
The precision is lower for each class. The results for the 
PET, PP, and PVC classes show that the recall of this auto-
matic decision system is still not sufficient. In practice, this 
would mean that emissions from wastewater treatment 
plants were missed, for example, or that concentrations in 
environmental samples were underdetermined. Further-
more, a precision rate around or below 90% means that 
emissions would be incorrectly reported. Increasing the 
number of parameters and epochs would not lead to bet-
ter results. Increasing the complexity by adding layers even 
worsened the results. The model chosen is a good choice, 
although neither its precision nor recall was sufficient. 
Therefore, the method of one model per class was applied 
to optimize the results.

Table 2 Errors, precision, and recall of the first human 
annotation in comparison to the second human annotation 
(ground truth)

Class PE PET PP PS PVC

False negatives 392 283 248 324 695

False positives 57 2 12 23 13

Recall in % 83.6 55.7 75.4 84.1 97.0

Precision in % 97.1 99.4 98.4 98.7 99.2

Table 3 Precision and recall of deep learning (one single model)

Class PE PET PP PS PVC

Recall in % 96.4 91.5 91.3 97.2 87.8

Precision in % 92.1 87.3 90.5 87.6 94.2
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Deep learning (one model per class)
Table  4 summarizes recall and precision for the one 
model per class method, separated by decision threshold. 
The recall was much higher with separate models than 
with a single model (see Table  3). This could have been 
due to additional prior knowledge by domain experts, 
which restricted the feature space from dimension 611 to 
284 (using PE as an example). This meant the algorithm’s 
search range was predefined. For a threshold of 0.5, 
the recall for all classes was above 98.4%. Reducing the 
threshold to 0.1 even increased the recall to over 99.4% 
for all classes. This high recall ensures a high probabil-
ity that all emissions from a wastewater treatment plant 
will be identified, among other advantages. However, this 
high recall came at the expense of precision. The preci-
sion dropped below 90% for all classes at a threshold 
of 0.5. At below 80%, it was lowest for the PET and PP 
classes. At a reduced threshold of 0.1 the precision rate 
for all classes was far below 80%, with a precision rate of 
only 33.0% for PET. Increasing the number of parameters 
and epochs did not change the results. Increasing the 
complexity by adding more layers worsened the results 
(overfitting). Therefore, the degrees of freedom seem to 
be a good choice.

In summary, the recall achieved with this method 
was very good for practical applications of deep learn-
ing in the field of microplastics detection. However, in 
the method’s present form, the precision rate would 
be unsuitable in practice. The number of misallocated 
microplastics was too high to gain reliable analysis data.

Human–machine teaming
The results of human annotation shown in the section 
entitled "Human annotation (first annotation)" showed 
a very high rate of precision but a low recall, while the 
results of the deep learning (one model per class) showed 
a high recall with low precision (see the results in the sec-
tion entitled "Deep learning (one model per class)"). The 
combination of both methods (human–machine team-
ing, see the method section entitled "Human–machine 
teaming") resulted in a recall of ≥ 98.4% at a deep-learn-
ing threshold of 0.5, and in a recall of ≥ 99.4% and a 
precision rate of ≥ 97.1% at a threshold of 0.1. A further 
advantage to this method is the reduction in the time 

required by human annotation: While human-only anno-
tation requires that all instances be verified, human–
machine teaming was used only 18% required verification 
by a domain expert. However, since 60% of the instances 
are true positives, the extra effort was actually reduced 
to approximately 7%. Due to this and the GUI developed 
with class presorting and peak indication, the evaluation 
time for one environmental sample was reduced to < 1 h; 
in most cases it is only a few minutes.

Discussion: data set and methods
As explained in Introduction, the microplastics spectra 
from environmental samples are often of poor quality, 
resulting in several problems for the development and 
application of deep-learning methods.

Annotation
The results of the methods involving deep learning pre-
sented here showed that high recall rates were accompa-
nied by low precision, meaning that the number of false 
positives increased sharply. These instances were closely 
examined by the domain experts during the second 
human annotation (see the section entitled "Improve-
ments in human annotation and the data set (second 
annotation)"). Very often, the expert was unsure whether 
certain examples belonged to the class or not. Often all 
the expected peaks were present and were even in the 
correct positions. However, the expert lacked the unique 
peak that outperformed the environment. So, to prevent 
over-finding, the domain expert decided to assign these 
instances to the 0 class, meaning that many supposed 
false positives may be correctly classified by deep learn-
ing after all. Unfortunately, there is no method requir-
ing reasonable effort that can be used to verify the actual 
allocation of these particles to classes. Therefore, the 
annotation in our use case remains uncertain regarding 
the precision provided by deep learning.

Multi‑label and inter‑class variance
In practice, one spectrum could consist of peaks from 
more than one substance. Peaks from the various sub-
stances can overlap and are therefore often shifted or 
smeared. This is of special relevance, because dyed 
microplastics sometimes show pigment and polymer 

Table 4 Precision and recall of deep learning (one model per class)

Class Threshold PE PET PP PS PVC

Recall in % 0.5 99.2 98.8 98.9 99.0 84.4

Precision in % 88.8 74.2 79.5 86.2 86.5

Recall in % 0.1 99.9 99.8 99.4 99.8 99.8

Precision in % 71.7 33.0 52.0 70.5 72.8
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spectra as well. Figure  7 illustrates the spectrum of a 
microplastic particle with peaks resulting from PE, PP, 
and the pigment copper phthalocyanine (CuPC).

Furthermore, the spectra graphs for the same poly-
mer were often very different. Figure  8 shows three 
examples of PE spectra, with S1 and S3 differing greatly 
in intensity: While in S1 the Raman intensity was 
between 0 and 50, the intensity went up to 1500 in S3. 
S3 was also characterized by increasing interference 
(the Raman intensity rose) in the signal as the frequen-
cies progressed from high to low. While some instances 
re characterized by clear peaks with little fluctua-
tion (such as S1), high fluctuations were evident in S2, 
which made recognition difficult. Finally, the graphs for 
different instances varied greatly; for example, marginal 

peaks sometimes occurred due to the overlapping of 
other substances and noise.

Spectra with strong interferences
The methods developed in this study do not allow identi-
fication of spectra with strong interfering signals. In cases 
where polymer peaks are masked by such interfering sig-
nals, e.g., fluorescence caused by debris from biological-
organic matrix components, no identification can be 
made by machine learning. However, interfering signals 
can be avoided by selecting appropriate sample prepara-
tion and measurement parameters. However, if interfer-
ing signals occur or have occurred in the past, there are 
already machine learning approaches to deal with them: 
Brandt et  al. [12] developed a method to reconstruct 

Fig. 7 Spectrum containing peaks from PE, PP, and the pigment copper phthalocyanine

Fig. 8 PE spectra from different microplastic particles: The quality (signal to noise-ratio, peak position, interference) of the spectra varies greatly
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low-quality FTIR and Raman spectra with distortions 
such as fluorescence, interference, or cosmic rays. They 
validated their neuronal network using spectra from arti-
ficially aged (cryo-milling) microplastics (polyethylene 
terephthalate (PET), PE, poly (methyl methacrylate), PS, 
PP, PVC) measuring 20—500 µm. Their results show that 
machine learning is suited to improve poor-quality spec-
tra. As the authors state, the application of their methods 
may be the reconstruction of existing spectral data. It is 
not suitable for polymer spectra recognition.

Size of microplastics
The quality of the spectra is strongly dependent on the 
particle size. In this study, only spectra of microplastic 
particles ≥ 20  µm were included in the data set. How-
ever, this is because this value was defined as the lower 
limit of quantification in the projects from which the data 
were obtained. Although the detection of microplastic 
particles ≥ 1  µm using µ-Raman spectroscopy is not a 
problem, there are still no methods for reliable sample 
preparation of environmental or wastewater samples with 
sufficiently high recovery rates for microplastics < 10 µm 
[11]. As soon as such methods are available, the spectra 
identification will probably have to be adapted to smaller 
microplastics.

Practical relevance of the results
Considering the relatively small dataset, the results of the 
machine learning models are good. Especially the single 
model approach seems to be acceptable, as recall and pre-
cision are around 90%. However, we decided to increase 
precision and recall by using the human–machine 

teaming approach for several reasons: In spectroscopic 
microplastic analysis, recovery rates are low [11, 29]. 
Therefore, any possibility to increase accuracy should be 
taken. In addition, an error of 10% does not seem that 
high, but it can increase due to extrapolation: Usually, 
subsamples are analyzed because the number of particles 
in a sample is too high for a full µ-Raman spectroscopy 
analysis. The analysis of these subsamples must be as 
accurate as possible to avoid extrapolation errors. These 
arguments are strengthened by the fact that human–
machine teaming does not require a lot of human effort. 
Most samples can be analyzed in < 1 h. This is not much 
time in microplastics analysis, where sample preparation 
and analysis of a single sample can take several days.

Therefore, the results of the human–machine teaming 
method are promising. However, it is important to men-
tion that these results summarize average rates of preci-
sion and recall. In practice, it is crucial that microplastics 
concentrations be detected correctly in all individual 
samples. Since the domain experts verify all positives in 
the human–machine teaming method, there is no prob-
lem with precision, and the number of false positives 
should be correspondingly low. The situation with recall 
rates is different, however. Figure  9 illustrates the recall 
per sample and class as box plots, separated by thresh-
old. Both the median and the quartiles were close to 1 for 
all classes. Samples with a recall below 1 lead to falsely 
low analysis results. In practice, three cases can be distin-
guished: A. The sample remains in the evaluation despite 
false negatives. The effect is not large, because this leads 
only to a slight underestimation of the concentration. 
Microplastics are at least qualitatively analyzed in this 

Fig. 9 Recall per sample, class, and threshold
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case. B. The sample is not included because of the false 
negatives, so the polymer does not appear in the evalua-
tion. However, inclusion of this polymer is important for 
purposes such as ecotoxicology or wastewater research, 
since an allocation to the source would require this infor-
mation. C. The sample is not included anyway, because 
the number of positive particles is below the blank value. 
Here, the reduced recall has no effect.

For human–machine teaming, out of 282 (= 47 × 6) 
analyses of the data set with separate deep-learning net-
works per class, 20 were with a recall < 1. In these, case 
A occurred 18 times and cases B and C occurred once 
each. This means that there was only one sample in 
which one class was not detected. When human annota-
tion alone was used, on the other hand, case 2 applied 27 
times. As a result, the number of microplastic particles 
was underestimated, and the sample was not included in 
the analysis results. With use of this method, emissions 
were misreported and would have led to ineffective coun-
termeasures; particularly striking was a sample in which 
the recall for the PP class was 0. An instance of PP was 
annotated but not recognized by the algorithm. How-
ever, the blank value given by the domain experts was 
not exceeded for the sample, so the error would have no 
effect in practice.

Conclusion
Machine-learning algorithms and human–machine 
teaming are promising methods to improve the quality of 
spectroscopic analyses of microplastics. With high ana-
lytical precision, they can significantly reduce the time 
required for sample evaluation. However, there are still 
problems with using deep-learning algorithms as a stan-
dalone method to analyze environmental data. Among 
other factors, this is because the data set from the analy-
ses of environmental samples still presents challenges. 
The availability of more research data and its use as an 
extended database could be a solution to this problem. 
Both the promising approaches and the existing method-
ological challenges indicate the need for further research 
in this field.
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