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Microplastics are pervasive in the aqueous environment, 
having been reported in air, lakes, ocean, drinking water, 
sediment, snow, animals, and even humans [1–4]. Since 
plastic pollution was first documented in the marine 
environment in the 1970’s [5], production has increased 
more than 10-fold [6], and inputs into the environment 
are expected to triple over the next ~ 20 years [7]. Since 
plastic degrades over extremely long timescales [8] and is 
ingested, inhaled, or absorbed throughout the food chain 
from microscopic organisms to humans [9–11], contami-
nation is causing increasing concern for environmental 
managers. Many animals cannot distinguish microplas-
tics from food, creating the potential for satiation chal-
lenges that can lead to decreased growth, reproduction, 
and survival [12]. Once microplastics enter food webs, 
they can be consumed by humans through seafood and 
other means [13]. Compounding the bioaccumulation 
challenge and toxicity of plastic particles by themselves 
is that plastics can serve as vectors for added chemi-
cals [14–16] and attached pathogens [17, 18], creating a 
potential exposure pathway for multiple types of contam-
inants. Additionally, the smallest microplastics can pene-
trate the gut wall and accumulate in tissues that obstruct 
organ function [19–21].

The State of California has already taken robust man-
agement actions to reduce the amount of plastics in the 
environment and is developing additional long-term 
strategies [22]. Prominent among those was the first 

assignment of a water body to the federal 303(d) list as 
impaired due to the presence of trash [23]. This action 
enabled water-quality agencies to issue a regulatory 
target for trash known as a total maximum daily load 
(TMDL), which compels entities that discharge runoff 
to reduce trash loading [24]. The California State Water 
Resources Control Board expanded on this by amending 
the master plans that govern management of California’s 
coastal ocean and freshwater systems to include trash 
as a water-quality impairment, requiring agencies that 
discharge runoff to install storm drain inlet devices that 
to capture all particles larger than 5 mm, or develop an 
alternate plan for capturing trash at equivalent rates [25].

In addition to capturing plastic entering the marine 
environment, California has also been aggressive at 
reducing plastics at the source. For example, California 
voters approved in 2016 a statewide ban on carry-out 
plastic bags at grocery stores [26], and in 2021, passed a 
law prohibiting restaurants from distributing single-use 
plastic food ware to customers, except upon request [27]. 
To limit impacts of primary microplastics, California 
enacted regulations on facilities that manufacture, handle 
and transport pre-production plastic pellets that serve as 
the raw materials for plastic production [28], and is eval-
uating whether companies should be required to perform 
alternatives analyses for products that contain intention-
ally added microplastics through the state’s green chem-
istry program [29].

To specifically address the risks of microplastics to 
humans and aquatic ecosystems, California passed two 
legislative mandates in 2018. Senate Bill 1263 requires the 
California Ocean Protection Council to adopt by 2022 
a microplastics management strategy for assessing and 
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mitigating ecological risks to coastal marine ecosystems 
[30]. Senate Bill 1422 requires the California State Water 
Resources Control Board to implement routine drinking 
water microplastics monitoring by 2021 [31].

Achieving these mandates requires addressing a num-
ber of scientific needs. First among those is agreeing 
on a definition of microplastics, which is a necessary 
first step toward management of these diverse particles. 
The California Water Resources Control Board adopted 
an intentionally broad regulatory definition in 2020 to 
ensure the broad range of potentially harmful plastic par-
ticles are considered [32, 33], which was based on con-
verging definitions in the literature [34]. Next was the 
development of standard measurement methods, which 
California addressed through an inter-laboratory method 
comparison study that quantified effectiveness of various 
analytical techniques for measuring microplastics con-
centrations in water, sediment and tissue matrices [35]. 
Third, was identifying prevalence of microplastics in the 
environment and the sources that lead to that contami-
nation, with the first exemplary monitoring in the state 
conducted in San Francisco Bay [36, 37].

However, the largest scientific need is understand-
ing biotic effects pathways and abundance thresholds at 
which health effects manifest. Monitoring data allows 
for risk characterization when they are compared to con-
centrations at which health effects manifest. Such health 
effects thresholds are a primary driver in determining the 
urgency for imposing management controls, often form-
ing the foundation for regulatory actions in California 
and other jurisdictions [38]. To help develop thresholds 
that support its legislative management needs, the State 
of California held a workshop that brought together 
experts from around the world. This special issue of 
the journal is dedicated to sharing the outcomes of that 
workshop.

The workshop focused on defining pathways of poten-
tial effect for microplastics and which particle charac-
teristics, such as size, shape, polymer type, or additional 
factors most contribute to toxicity (Hampton et al. 2022 
[39], “Characterizing microplastic hazards: Which con-
centration metrics and particle characteristics are most 
informative for understanding toxicity in aquatic organ-
isms?”). The experts also identified management con-
structs that are responsive to legislative requirements 
and into which decision thresholds are embedded for 
aquatic ecosystems [40] and human health through 
drinking water (Coffin et al. 2022 [41], “Development and 
application of a health-based framework for informing 
regulatory action in relation to exposure of microplastic 
particles in California drinking water”). The risk assess-
ment framework for ambient water was applied to moni-
toring data in San Francisco Bay, California to assess 

risks and inform management strategies (Coffin et  al. 
2022 [41], “Risk Characterization of Microplastics in San 
Francisco Bay, California”). While sufficient evidence was 
available to derive thresholds for aquatic ecosystems with 
a moderate-high degree of certainty, key information 
and data quality were lacking for quantitatively assess-
ing risks to humans through drinking water exposure 
[42]. To increase confidence in future risk assessments, 
workshop participants identified knowledge gaps and 
recommended additional research to fill them (Hamp-
ton et al. 2022 [43], “Research Recommendations to Better 
Understand the Potential Health Impacts of Microplastics 
to Humans and Aquatic Ecosystems”) and developed an 
interactive open-source and open-data online tool (Tox-
icity of Microplastics Explorer - “ToMEx”) that allow 
researchers to rapidly query and upload microplastics 
toxicity data, visualize multi-variate relationships, and 
derive species sensitivity distributions using site-specific 
particle distribution data, species, and statistical parame-
ters (Hampton et al. 2022 [44], “A Living Tool for the Con-
tinued Exploration of Microplastic Toxicity”).

In addition to serving as a key factor in regulatory 
decision-making for pathway interventions and clean-
ups, health effects pathways and thresholds also drive 
management strategies to prevent pollution from enter-
ing the environment. Microplastics are a diverse con-
taminant suite comprised of many polymer types, sizes, 
and shapes [45] with more than 10,000 added chemicals 
[46], of which some may drive toxicity in humans and in 
ecological receptors [47–49]. Understanding the relative 
toxicity of each of these components allows for strate-
gies to reduce the input of the most harmful materials 
into the environment through safer-by-design regulatory 
frameworks as well as bans and reduction targets [50]. To 
inform these management efforts, Hampton et  al. [39] 
performed a meta-analysis to identify physical character-
istics of microplastics that are most important for toxic-
ity, finding that size is a critical factor, and Peters et  al. 
[51] used human physiological in  vitro models in com-
bination with analytical chemistry to identify hazardous 
chemicals associated with environmental microplastics.

Understanding health effects thresholds and path-
ways is also critical to developing effective monitoring 
programs. Numerous analytical techniques are avail-
able to quantify microplastics, with some being more 
appropriate and cost-effective for different sizes, shapes 
and polymer types [52]. For instance, visual micros-
copy might be used for particles larger than ~ 500 μm, 
Raman spectroscopy for particles larger than ~ 5 μm 
and electron microscopy for even smaller particles, each 
requiring different protocols and encompassing substan-
tial cost differences [35]. Moreover, some techniques 
allow for estimation of the total mass of polymers (e.g. 
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pyrolysis-gas chromatography/mass spectrometry) with-
out providing detailed information about the particles’ 
sizes or shapes, while others can quantify particle counts 
in addition to these other parameters (e.g., Raman and 
infrared spectroscopy) [52]. Such analytical limita-
tions have led to non-alignments between environmen-
tal monitoring data and laboratory toxicity data which 
can be accounted for through understandings of toxic-
ity mechanisms and distributions of particle character-
istics such as size, shape, and density [14]. While such 
estimation methods allow for assessments of risk ([40]; 
Coffin et al. 2022 [41] “Development and application of a 
health-based framework for informing regulatory action 
in relation to exposure of microplastic particles in Cali-
fornia drinking water”), they may result in decreased 
confidence in risk characterizations (Coffin S, Weisberg 
SB, Rochman C, Kooi M, Koelmans AA:  Risk charac-
terization of microplastics in San Francisco Bay, Califor-
nia, submitted) “Risk Characterization of Microplastics 
in San Francisco Bay, California”), prompting the need 
for more holistic monitoring regimes. Additionally, 
understanding the thresholds at which effects are likely 
to begin manifesting is important to determining the 
appropriate water volume to sample (e.g., for drinking 
water; Coffin et  al. “Development and application of a 
health-based framework for informing regulatory action 
in relation to exposure of microplastic particles in Cali-
fornia drinking water”), as sampling too little water could 
lead to incorrect conclusions about a lack of risks.

Given these challenges and recent innovations, with 
this special collection we offer for the first time a cohe-
sive and aligned series of articles covering all facets of 
microplastics risk assessment. Using a data-driven and 
quality-screening approach, we developed risk assess-
ment and management thresholds for aquatic ecosys-
tems, developed recommendations for further research 
to assess risks to humans, and performed meta-analyses 
to shed light on the complex multi-factorial interactions 
between plastic particles and biological systems.
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