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Abstract

A central challenge in microplastics (MP, diameter < 5 mm) research is the analysis of small plastic particles in an
efficient manner. This review focuses on the recent application of infrared hyperspectral imaging (HSI) to analyze
MP. We provide a narrative context for understanding technical principles of HSI followed by a systematic review
and discussion of the variety of approaches to apply HSI to MP research, including instrumentation, data collection
and analysis. HSI was successfully applied to analyze dry MP > 250 μm, with drastic improvements in analysis time
as compared with the best available technology, such as Fourier transform infrared (FT-IR) and Raman spectroscopy.
Primary challenges we identified through the review include improving spatial resolution to detect smaller MP and
development of robust models for data analysis. Parameters and practices for reporting quality assurance and
quality control measures are summarized and recommendations are made for future research. We conclude that
HSI is a promising technology for MP analysis but requires adaptation for this new application.
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Introduction
Plastics are environmental pollutants ubiquitous in marine
and freshwater environments [1, 2] as well as terrestrial
ecosystems [2]. While it has been established that plastic
pollution can adversely affect non-human organisms [3],
the effects on human health are remain uncertain [4]. Dis-
tribution of MP is another area of uncertainty. Studies
reporting MP presence and abundance are typically local
or regional and do not provide enough data to build a glo-
bal picture [5]. More data on distribution and effects of
MP will be required in the coming decades to close these
knowledge gaps and mitigate any potential negative
effects.
The body of research addressing plastic pollution is

rapidly growing, however the analytical detection and

characterization of plastic debris poses a range of chal-
lenges: Large debris can easily be captured and analyzed,
but microplastics (MP) – often defined as particles with
a diameter smaller than 5 mm [6]– pose an analytical
challenge [7]. Visual MP analysis is simple and inexpen-
sive, but no longer an acceptable standard, especially for
particles smaller than 500 μm. Chemical analytical
methods have become an essential part of MP research
to provide chemical confirmation of MP as synthetic
polymers in addition to identifying MP below 500 μm.
High-tech solutions using imaging spectroscopy have be-
come the “gold standard” because of their accuracy and
spatial resolution but are time consuming and expensive.
A simple and fast approach is needed to increase sam-

ple throughput and make high quality analytical tech-
niques more widely available. Hyperspectral imaging
(HSI) has recently been applied to MP analysis with en-
couraging results. HSI was originally developed for
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remote sensing of the earth’s surface [8] but has since
been applied to a variety of fields for identification of
materials [9–12].. Most notably, HSI is widely used in
the recycling industry to separate plastics by polymer
type [13]. This is a promising proof of concept with clear
links to MP analysis.
This systematic review presents literature which uses

HSI for analysis of MP. The goal of this review is to crit-
ically assess the capabilities and limitations of this tech-
nique and to outline needs for improvement that will
facilitate the application of HSI in MP research. The re-
view focuses on technical aspects of data acquisition
(spectral resolution, spectral range, spatial resolution,
analysis time) and data analysis (chemometric analysis
and modelling) to summarize which strategies have
achieved the best results. Challenges and advantages of
HSI are compared with Fourier transform infrared (FT-
IR) and Raman spectroscopy to assess the relative effect-
iveness of this technique.

Current approaches and challenges in microplastics
analysis
MP analysis of environmental samples can be divided
into three distinct processes: sample collection, sample
treatment to isolate MP and the identification and
characterization of MP to confirm the polymer type of a
particle [14]. Sample type will usually dictate the first
two processes. The sample matrix represents a general
challenge independent of the analytical technique: Separ-
ating MP from naturally occurring materials such as tis-
sue, chitin, silica and other minerals requires an
elaborate sample preparation, including density separ-
ation, enzymatic treatment and wet peroxidation [15].
The last step in the analysis, characterization of MP, will
depend on the instrumentation available to the re-
searcher and the research questions of interest. MP
characterization has become more sophisticated in re-
cent years as the field of MP research has matured.
Characterization of MP was initially a physical descrip-

tion of the particles. Particles are categorized into size
classes which are parsed based on limits that are often
more operationally than scientifically motivated [16]. As
an example, the mesh sizes of nets and sieves are often
the determining factors. The simplest way to identify
MP is using visual inspection with the naked eye. De-
scriptors such as form, color, or resistance to heat (e.g.,
hot needle test) can be used to tentatively confirm parti-
cles as plastics [17]. This process provides some quanti-
tative and qualitative description of the particles;
however, it is based on the subjective evaluation of the
analyst [18]. Even experienced analysts can misclassify
particles resulting in an overestimation [19] or under-
estimation [20] of the number of MP in a sample. Lastly
and perhaps most importantly, it is impossible to

confirm the chemical composition of the particle. For
these reasons, visual identification can be useful as a
simple tool available to many but cannot be used to
quantify MP with high accuracy or repeatability.
Analytical techniques which can identify the polymer

type are now generally preferred [14, 21]. One technique
to characterize polymers in environmental samples is
pyrolysis-gas chromatography coupled to mass spec-
trometry (Py-GC-MS) [22]. Py-GC-MS uses controlled
thermal degradation to convert solid samples into pyr-
olysis products that are separated by gas chromatog-
raphy and identified using mass spectrometry. Most
polymers will yield unique pyrolysis products [23] enab-
ling the simultaneous identification of multiple synthetic
polymers in a sample. Py-GC-MS can thereby provide
information regarding the presence of different polymers
and an estimate of their mass-based concentration ac-
cording to their degradation products. A major benefit
of Py-GC-MS is sensitivity; nanoplastics can be quanti-
fied even in low quantities [24]. It should however be
noted that the accuracy of concentration estimates has
been questioned [24]. A limitation of Py-GC-MS is that
qualitative and quantitative information about the parti-
cles is lost (e.g., number, size, and shape of MP) due to
the thermal degradation of the sample. To avoid losing
morphological information, Py-GCMS can be combined
with other analytical techniques. Spectroscopic tech-
niques can be used to analyze a sample before it is ana-
lyzed with Py-GC-MS (i.e., before the sample is
destroyed). This provides detailed information about the
particle characteristics of MP [25], in addition to de-
tailed chemical information and mass estimates from
Py-GC-MS.
Like Py-GC-MS, Raman and FT-IR spectroscopy can

chemically identify MP [26]. Both are optical, non-
destructive techniques and are routinely used for MP
analysis. Raman spectroscopy has reportedly detected
particles as small as 1 μm [27], while FT-IR techniques
have a limit of detection of10–20 μm [28]. In their sim-
plest forms, both techniques use point measurements to
analyze particles. If particles are large and easy to han-
dle, these methods work well and can identify polymer
type relatively quickly [21]. However, manual selection
of particles can still result in some selection bias; sus-
pected MP can be ruled out as false positives, but it is
impossible to know how many particles were incorrectly
classified as non-plastic (i.e., missed or overlooked).
For particles < 500 μm, manual handling becomes im-

practical and particles must be analyzed on a filter where
a sample has been deposited. In this case, the operator
must locate particles on the filter (usually with a micro-
scope attachment) and take a point measurement of
each particle to confirm its chemical composition. To
reduce bias of particle selection and additional manual
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work, software-based solutions such as ParticleScout and
ParticleFinder can automatically select particles based on
bright or dark-field imaging [29]. A microscope is used
to image a portion of the filter’s area and an image rec-
ognition algorithm automatically highlights all particles
in the field of view (FOV). Each particle identified by the
software is systematically analyzed with the help of a
motorized stage. The stage moves to the desired region
and a point measurement is taken with the laser (Ra-
man) or IR beam (FT-IR). All points identified by the al-
gorithm as “particles” will thus be sampled. An
automated approach using particle identification soft-
ware is less subjective and reduces the chance of missing
MP. However, in samples with many particles this ap-
proach can be time consuming. The analysis time is
dependent on the number of particles identified in the
image. Depending on the sample medium and treatment,
organic, mineral or biological matter could be present
during analysis. This increases the number of particles
to be analyzed, adding to analysis time.
Another approach to automated analysis is the use of

spectral imaging techniques based on FT-IR and Raman
spectroscopy. Focal plane array FT-IR (FPA-FT-IR) and
Raman imaging stitch together photomosaics from mul-
tiple small areal measurements. The result is a spectral
image where each pixel contains a Raman or FT-IR
spectrum. This technique removes particle selection
altogether, relying on full coverage of the filter surface
area to capture all particles. Areas of the filter that con-
tain specific polymer spectra are identified using match-
ing algorithms or chemometric analysis [30].
Imaging techniques remove selection bias but intro-

duce a new obstacle: areal coverage. For example, the
focal plane arrays of FT-IR instruments cover very small
areas (approximately 5.5 μm2 depending on the sensor),
while filters are often 47 mm in diameter. With a filter
of this size, the sample covers an area of circa 1700
mm2. As a result, analyzing an entire sample is highly
time consuming. With the best available instrumenta-
tion, analysis time for one 14 × 14 mm area is currently
four hours [28]. Therefore, FPA-FT-IR is often applied
to a small subset of the filter area and the results are ex-
trapolated to the total filter area [21, 31, 32]. Such an ap-
proach assumes that any given area of a filter is
representative of the whole sample and MP are homoge-
neously distributed on the filter. Because this is not gen-
erally the case, imaging subsets of samples introduces
additional uncertainty [33].
In addition to being time consuming, both Raman and

FT-IR imaging systems are highly complex and expen-
sive with costs in the range of 100 k to over 200 k USD,
respectively [28]. In addition, imaging systems such as
FPA-FT-IR operate in transmittance mode. This requires
specialized sample filters that are IR transparent and

very flat (such as aluminum oxide membrane filters) [33]
which adds to expenses for consumables. Operation in
transmittance mode also excludes particles which are
entirely opaque or very thick, as the signal will be atten-
uated completely [28, 30, 32]. Opaque particles can be
identified with Raman imaging, but fluorescence from
organic matter can hinder identification [30].
HSI has recently been applied to analyze MP and

shares many characteristics with FPA-FT-IR (see 1.5).
With HSI, an entire filter can be imaged precluding the
need for particle selection or analysis of smaller areas of
the filter. As with FPA-FT-IR and Raman imaging, the
output of HSI is an image which contains a spectrum for
each pixel. The spectra are classified with multivariate
techniques to identify chemical signatures of objects in
the image. The image can thus provide quantitative and
qualitative data about the polymer type of MPs, their
size, number, and shape (Fig. 1).

What is a hyperspectral image?
The term “hyperspectral imagery” was coined by
Alexander F. H. Goetz in a 1985 paper on remote sens-
ing which describes the inception of the technology [8].
HSI was developed as an imaging technique to identify
materials on the earth’s surface from air and space craft.
HSI provides high spectral resolution as compared with
multispectral imaging systems such as the Landsat
multispectral scanners. This improvement in spectral
resolution enabled improved identification of surface
materials, specifically minerals in soils. The copious
amounts of data also helped to overcome challenges in
remote sensing such as atmospheric interference and
multiple mixed materials on the earth’s surface [34].
Despite being developed in the 1970s, HSI did not see
wide application until technical advances allowed easier
data storage and processing [34].
Since the 1980s, HSI has been applied in a broad

spectrum of fields. Remote sensing with HSI has been ap-
plied underwater and in space [9, 35, 36]. The medical
field uses HSI to identify tissues such as nerves, cancer
cells and burn wounds [11]. Food processing industries
use HSI for quality control of produce [10]. Waste pro-
cessing plants use HSI to sort wastes, specifically in the re-
cycling of plastic materials [13]. Sorting plastic waste into
categories by polymer type results in higher quality poly-
mers for recycling. In this specific case, the same princi-
ples applied in recycling can be applied to MP in
environmental samples. On a larger scale, remote sensing
has been used to identify macroplastics in the environ-
ment from airplanes, drones, and satellite images [37–41].
A hyperspectral image is based on the same principles

as a traditional red-green-blue (RGB) image. An image
can be represented as a matrix with I rows and J col-
umns, giving the dimensions I x J. These two spatial
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dimensions are the size of the image. Each entry in the
matrix is synonymous with one pixel. Despite the use of
squares to represent pixels, pixels are in fact point mea-
surements [42]. These “squares” are more correctly re-
ferred to as the spatial resolution, where each point
measurement (pixel) represents an area of a discrete size.
Each pixel represents a position in real space which is
reflecting and absorbing light across the electromagnetic
spectrum. Reflected light is registered as a number indi-
cating the intensity. If only one wavelength is sampled,
the result is a greyscale image where high intensity is
represented as white and low intensity as black. A color
image uses three wavelength bands to describe the
amount of light in a region of the electromagnetic
spectrum which is being reflected by an object. These
color bands lie within the spectrum of light visible to the
human eye (400–800 nm) and correspond to red, green,
and blue visible light. These regions are chosen due to
the human eye’s sensitivity to these photopigments. Each
pixel in an image is expressed as a combination of three
intensity values representing red green and blue (RGB),
and the matrix now has three dimensions [43]. I and J
are spatial as before, and the new third dimension, K, is

spectral. The three K components can be visualized as
layers with dimensions I x J stacked against one another.
If more layers are included, the visible spectrum can

be more finely parsed to include multiple narrower
bands thereby providing more detailed information. This
is called a multispectral image. Both the number of
bands and the width of the bands can vary. Since the hu-
man eye only needs three wavebands to interpret color,
the addition of multiple spectral bands is not done for
viewing pleasure. It is rather a more detailed representa-
tion of how an object reflects light and can give informa-
tion about the chemical composition of that object.
Sampled wavelengths can include regions of the electro-
magnetic spectrum other than visible light, such as the
infrared (IR), to target absorbance regions of specific
chemical bonds. The resulting data takes the form of a
three-dimensional datacube with field of view of the
imager (I x J, i.e., pixels) and the number of wavebands
(K).
When the number of spectral bands is larger than 100,

the resulting datacube becomes hyperspectral. The sem-
inal paper describing HSI by Goetz et al. [8] defines HSI
as “the acquisition of images in hundreds of contiguous,
registered, spectral bands such that for each pixel a radi-
ance spectrum can be derived”. This definition excludes
multispectral imaging as the bands are not necessarily
contiguous. The result of this contiguous sampling is
best viewed as a spectrum. This spectrum is a highly de-
tailed representation of the different wavelengths of light
reflected by an object, and therefore allows classification
of pixels according to chemical composition rather than
just color.

Hyperspectral instrumentation
The main components of a hyperspectral imager consist
of an objective lens (i.e., a fore lens, front optic or cam-
era lens), a spectrograph with an entrance slit (of fixed
width) and a two-dimensional detector which is typically
a photovoltaic semiconductor, such as a charge-coupled
device (CCD). A light source is also a key component
but is not typically integrated with the imager. An ideal
light source is a National Institute of Standards and
Technology (NIST) issued tungsten halogen lamp which
emits strongly in both visible and IR light. The charac-
teristics of the components will influence the measure-
ment parameters such as spatial and spectral resolution,
bandwidth, bit depth and signal-to-noise ratio.
There are three common methods of HSI image acqui-

sition: the point scan, line scan or areal scan. Of the
three methods, (see [44] for in-depth discussion), the
line scan or “pushbroom” method/sensor has become
the method of choice for many applications of HSI, such
as remote sensing [38, 45, 46]. The pushbroom scan uses
the movement of either the object being imaged or the

Fig. 1 Pixel classification based on hyperspectral data represented by
a false image. The false image is generated using three infrared
wavelengths as substitutes for RGB channels (left). Each pixel contains
a spectrum which has been classified by a supervised model. The
output of the classification uses a colored mask to indicate different
polymers. All unmasked pixels are classified as background
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imager to cover a given area (Fig. 2). The pushbroom is a
line-scan technique that collects one “line” in the spatial
dimension per measurement, (i.e., slit image). The light
source is above the sample pointing downwards. As the
light source does not emit the same intensity of light at
each wavelength, a Lambertian reflectance standard (e.g.
Labsphere Spectralon) is used to correct the spectra. The
reflectance standard reflects all wavelengths equally, and
thus records the emission spectra of the light source. Light
from the source hits the object being imaged and is
reflected upwards where it passes through the foreoptic
and slit. The beam then passes through to a collimator
followed by a dispersive element [47]. The dispersive
element spatially separates each wavelength which is then
focused onto a 2D detector array. In this case, one spatial
dimension and the spectral dimension (I ´ K) are sampled
simultaneously. By moving the imager, an adjacent area
can be sampled giving the second spatial dimension (J).
The line scan is perpendicular to the direction of move-
ment. The frame rate corresponds to the speed of move-
ment and each line is stitched to the next creating a
photomosaic of slit images. The slit size is fixed, but by
moving the imager closer to or farther away from an ob-
ject, the height of the line scan can be changed. The same
is true for the width of the line which is always limited to
one pixel. That is to say that the area imaged by one de-
tector diode (and thus spatial resolution) is dependent
upon the distance between the imager and the object of
interest as well as the FOV.

Key differences to FT-IR spectroscopy
Raman spectroscopy operates on different principles
than IR spectroscopy, but both FT-IR and HSI can be
used to obtain reflectance or transmittance spectra in IR.
The key differences lie in the instrumentation used to
collect these spectra, and their limitations with respect
to time, areal coverage, and spectral range. Most FT-IR
instruments use an interferometer to obtain spectra in
which a moving mirror creates constructive and destruc-
tive interferences of wavelengths over time [48]. To sam-
ple all wavelengths in a given range, the mirror must be
displaced a given distance. This single “scan” (i.e., move-
ment of the mirror through its decided range) is re-
peated and the final spectral output is often an
accumulation of multiple scans [48]. Each measurement
produces a spectrum from a single point. Rather than
using interference patterns to separate wavelengths, HSI
instruments use dispersive elements and sensor arrays as
described above. This allows HSI to cover larger areas in
less time compared to FT-IR instruments.
The spectral range of HSI and FT-IR also differ. FT-IR

spectra often cover the range of 400–4000 cm− 1 equiva-
lent to wavelengths of 2500–25,000 nm. This wide spectral
range gives information about a variety of polarizable

chemical bonds including characteristic peaks for func-
tional groups and influences of hydrogen bonding. HSI fo-
cuses on a smaller range of wavelengths, typically visible
light (400–700 nm) and the near infrared region from 700
nm up to 2500 nm. This limits the information in one
spectrum, but the infrared region of 1700–1800 nm cap-
tures the characteristic first overtone of the C-H bond
useful for identifying organic molecules [49].
FT-IR and HSI ultimately produce the same type of in-

formation (spectra in IR), but the differences in instru-
mentation separate the two technologies with respect to
analysis time and detail of information. FT-IR gives a
more detailed spectrum at the cost of a more time-
consuming procedure. HSI spectra have a narrower
spectral range but imaging large areas can be done in
minutes. Exactly how much nuance can be sacrificed for
speed is a central question is assessing how HSI can be
used for MP analysis. This and other issues concerning
availability of instrumentation, data processing and per-
formance are the central focus of the systematic review.

Methods
Literature search
The methods and criteria used for the literature search
and selection process are described in a dedicated proto-
col published on Zenodo [50]. The protocol follows the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) [51] recommendations for sys-
tematic reviews. PRISMA guidelines have been adapted
to reflect the current field of research. The literature
search was carried out in May 2020. Three databases
(Scopus, Web of Science and ScienceDirect) and four
keyword combinations were chosen to search for rele-
vant literature. The keywords included 1) microplastic*,
2) macroplastic* OR “plastic litter” OR “plastic debris”,
3) hyperspectral, 4) “imaging spectroscopy” OR “spectral
imaging”. These four terms were combined as follows:
1 + 3, 1 + 4, 2 + 3, 2 + 4 (Table 1).
All publications returned by the search were pooled in

an Endnote database. Preliminary title and abstract
screening was used to exclude obviously irrelevant litera-
ture. The literature was then further screened and cate-
gorized into three levels (hereafter referred to as level 1,
level 2 and level 3) by two authors independently using
the online platform Rayyan QCRI [52]. Classification dis-
agreements among the authors were discussed and
agreement was reached after reading the full texts.
Level 1 studies are included in the systematic review

and apply HSI either to identify micro- or macroplastics
in environmental samples or in laboratory experiments
using simulated MP to optimize this application using
spiked samples. Literature using other spectroscopic
techniques without an imaging component (i.e. point
measurements) such as spectroradiometers and
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spectrometers were excluded. Level 2 publications are
tangentially relevant to the subject area and include re-
views of analytical methods if they include HSI and re-
mote sensing applications of HSI for plastic pollution.
The full texts are reviewed for relevant details and
resulting contributions are discussed. Level 3 publica-
tions are excluded from the review. This includes waste
management applications of HSI, studies using FT-IR or
Raman spectroscopy only, books and book sections as
well as material not in English.

Study evaluation
The purpose of this review is to collect information on the
suitability of HSI for MP analysis. More broadly speaking,

the field of MP research is currently making efforts to
harmonize and standardize protocols for quality assurance
and quality control (QA/QC). There are no standard ref-
erence materials available, and research groups typically
develop QA/QC guidelines internally. While some de-
scriptions of best practices are available [53], they are not
seen as highly relevant for exploring the feasibility of HSI
as a MP analysis method.. The diversity of methods, ap-
proaches and challenges is the primary theme of this
paper; therefore, we chose not to evaluate the quality of
the studies based on any QA/QC criteria.
For level 1 publications, metadata such as journal, au-

thor and year of publication was collected, along with the
following information: Type of study (identification of MP

Fig. 2 A schematic showing how HSI can be used to analyze MP. A Lambertian reflectance standard is scanned alongside the sample to normalize the
spectra according to the light source. The data cube is built of several line scans stitched together as the camera moves from right to left over the MP samples
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in environmental samples or method optimization using
known MP), sample matrix (if applicable), number and
type of synthetic polymers identified, size of MP analyzed,
instrumentation type and technical specifications (spectral
range and resolution, spatial resolution, limit of detection),
analysis time, data processing strategy and cost of
instrumentation.

Results & Discussion
Systematic Literature review: overview of studies
The literature search returned 496 results of which 224
were unique publications after the removal of duplicates
(Fig. 3). The abstract and title screening resulted in 114
potentially relevant publications. Twelve studies were
categorized as level 1 and thus included in the system-
atic review (Table 2). Seventy studies were categorized
as level 2, including 43 reviews and 27 studies on remote
sensing of plastics. Thirty-three publications were ex-
cluded (level 3) because they did not apply HSI tech-
niques, did not analyze MP or dealt only with the
theoretical aspects of data processing.
HSI used for MP analysis is an emerging field in the

early phases of development. This is reflected in the fact
that all level 1 studies were published between 2016 and
2020. These studies can be divided into those which col-
lect and analyze samples from the environment (n = 8)
and those which focus on method development using
MP made in the laboratory (n = 4, Table 2). One method
study is a combination of both, analyzing micro- and
macroplastics from the environment and spiked samples
in artificial media.
In the reviewed studies, four environmental media

were sampled: seawater (n = 5), soil (n = 1), sand (n = 1)
and biota (n = 1). Focus on the marine environment is
consistent with what we see in the literature with respect
to other MP studies [4]. Much like Raman and FT-IR
spectroscopy, HSI focuses on the analysis of particles
after sample treatment to remove the interfering matrix.
The number of polymers identified ranges from 1 (in
studies where other characteristics such as color or size
are the focus) to 13. Polymer types often included poly-
ethylene (PE), polypropylene (PP) and polystyrene (PS).
Authors also report the number of MP particles as well
as polymer type [54–61, 64], particle size [58, 61, 64]
and particle morphology [58, 61]. This demonstrates the
ability of HSI analysis to provide both qualitative and

quantitative data for MP particles. Not all studies in-
cluded both qualitative and quantitative data, presum-
ably because extracting particle number and morphology
requires more comprehensive image analysis than just
identification of presence/absence of certain polymer
types (see 3.7).

Sample collection and preparation
Seawater was collected with either manta trawls of sur-
face water using 300–500 μm mesh nets [54, 55, 57, 58],
multiple Niskin bottles [56], or a sea water pump con-
nected to a filtration unit. Soil and sand samples were
collected from quadrats [59, 60], while the intestinal
tracts of crucian carps where collected from fresh mar-
ket fish [61]. Sample preparation varied with each study
based on the sample matrix. There was noted variation
even when the sample matrix was the same: Some sea-
water samples were treated with combinations of en-
zymes, hydrogen peroxide and filtration or not treated at
all. Density separations were used in the case of soil and
sand samples to isolate MP. In method development
studies [62–65] pristine plastic pellets (i.e. virgin plastic)
were purchased from a manufacturer or acquired from a
research institution. To simulate MP which were not
only pristine pellets, common plastic items such as water
bottles were cut into smaller pieces.
Regardless of sample treatment, all MP were ultimately

either manually transferred into a separate container
(often a petri dish) or filtered onto a glass fiber filter
with a small pore size (ca. 2 μm). The former method is
used primarily for particles larger than 500 μm that have
been visually identified as potential MP. Large particles
which are practical to handle were often positioned on a
black background for imaging. This provides greater
contrast and can be used as an additional class in super-
vised analysis (see 3.7). Particles smaller than 500 μm
were filtered onto glass fiber filters or filters of another
suitable material. The filter with the deposited sampled
was then imaged by HSI. Both approaches (selection/ar-
ranging of particles and deposition on a filter) are illus-
trated in Fig. 2.
The analytical method will dictate which filter materials

are suitable. Ideally, HSI methods can be validated against
either Raman or FT-IR spectroscopy. The filter material
should therefore be compatible with multiple methods.
Zhu et al. [65] discuss the use of different filters to

Table 1 Search terms and number of results based on search engine

Search term Scopus Web of Science ScienceDirect

Microplastic* AND hyperspectral 140 17 56

Microplastic* AND (“imaging spectroscopy” OR “spectral imaging”) 50 6 22

(macroplastic* OR “plastic litter” OR “plastic debris”) AND hyperspectral 98 12 41

(macroplastic* OR “plastic litter” OR “plastic debris”) AND (“imaging spectroscopy” OR “spectral imaging”) 35 3 16
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improve detection and classification of MP and found that
gold-coated polycarbonate filters improved spectral char-
acteristics of PE particles compared to glass fiber filters. If
using glass fiber filters, filters without binders are recom-
mended as binders can produce their own spectral
signatures which interfere with measurements. For com-
parisons to Raman spectroscopy, both gold-plated and
glass fiber filters are suitable. For transmission measure-
ments with FT-IR systems, aluminum oxide membrane
filters are recommended by Löder et al. [33]. HSI spectra
of Anodisc or other aluminum oxide filters have yet to be
analyzed. Confirming their suitability would allow direct
comparisons between FPA-FT-IR and HSI.
Based on the studies covered in this review, we can

conclude that a glass fiber filter without binders provides

a suitable background for HSI measurements and is the
least expensive option. Unless the goal of the research is
to compare HSI with FT-IR in transmission mode, glass
fiber filters are recommended for particles well above
the spatial resolution of the instrument. As particle size
approaches the spatial resolution of the hyperspectral
camera, gold-plated filters may provide better results.

Instrumentation
Eleven different hyperspectral cameras based on the
pushbroom method were used to produce hyperspectral
datacubes in the reviewed studies (Table 3). While 11 of
the 12 studies only use one HSI camera, Karlsson et al.
[55] used three different hyperspectral imagers and com-
pared their performance. The wide variety of

Fig. 3 PRISMA flow chart of the literature selection process [51]. The selection of literature for this review was done according to PRISMA guidelines and
included four stages: Identification, screening, eligibility, and inclusion. Identification of literature was done by using database searches and keywords (Table 1).
Screening of literature included removal of duplicate studies and preliminary screening by abstract and title. Two authors independently evaluated eligibility of
each study resulting in inclusion of a small subset of studies
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instruments shows that HSI for MP analysis is a devel-
oping application. Different research groups are experi-
menting with different systems which are usually
designed for other applications such as waste sorting.
While this is not a harmonized approach, it has the
benefit of allowing comparisons between instruments
and methods applied.

Spatial resolution
Spatial resolution, that is, the smallest area represented
by one image pixel, is a critical parameter considering
the trend towards analysis of smaller MP. However,
there is no uniform reporting of the spatial resolution in
the available literature: Some studies either did not re-
port it at all or use a variety of similar but not analogous
terms. It is important to report spatial resolution in
technically correct and relevant terms to accurately com-
municate the capabilities of HSI. As an example, some
authors report “pixel pitch” as analogous to spatial reso-
lution. Pixel pitch denotes the distance between pixels
on a camera sensor or screen and thus has a propor-
tional relationship to the area being imaged. However,
pixel pitch alone does not contain enough information
to derive the size of the area represented by one pixel.
To calculate this area, one also needs to report the dis-
tance to the object, the FOV of the foreoptic and the
number of pixels on the sensor.

To facilitate the comparison of HSI instrumentation
and studies, reporting the spatial resolution as the area
represented by one pixel in an image is preferable and
recommended. This value should be reported as a set of
dimensions (height and width), as pixels are not neces-
sarily square. In addition, the limit of spatial detection is
a useful parameter to report because it represents the
size of the smallest particle that can be detected. An im-
portant distinction is that spatial resolution is not always
synonymous with limit of detection (LOD). As reported
by Schmidt et al. [56], two adjacent pixels needed to be
classified as the same synthetic polymer to reduce false
positives (see section 3.7). As a result, any particles
smaller than two pixels will not be detected. Spatial
resolution and data processing are thus both contribut-
ing factors to LOD.
In the studies reporting spatial resolution, the values

vary from 0.13–1000 μm (smallest possible dimension
represented by one pixel). Gallagher et al. [63] used a
CytoViva dark-field HSI microscope which has the high-
est spatial resolution of all instruments used. The au-
thors did not outline the exact specifications but based
on their RGB images the image pixel size represents an
area of less than 2 μm2. According to the manufacturer,
CytoViva hyperspectral microscopes can achieve spatial
resolution down to 0.128 μm [66], which would imply an
improved LOD as compared with the current perform-
ance of Raman spectroscopy (LOD = 1 μm, [27]). More

Table 2 Articles included in the systematic review. Some authors analyze plastic particles in environmental samples while others use
spiked samples for the development of HSI methods. Size ranges given in μm were not always completely reported and thus some
are reported as either a maximum or minimum size analyzed by the authors

Type of
study/sample

MP size range
collected/analyzed (μm)

Collection method/origin of particle Sample clean-up/preparation Reference

Seawater 300–500 Manta trawl Size fractionation, enzymatic digestion,
peroxide oxidation, filtration

[54]

250–5000 Manta trawl Visual selection [55]

> 63 Niskin bottle Ethanol, peroxide oxidation, filtration [56]

> 333 (trawl)
> 50 (pump)

Manta trawl and in-situ pump Visual selection [57]

> 500 Manta trawl No description given [58]

Sand/soil > 100 Quadrat sample Size fractionated, collected in petri dish [59]

500–5000 Quadrat sample Density separation, visual selection [60]

Biota 100–1000 Purchase of fish from local market Rinsing & scraping of intestinal tract,
smear on Teflon plate

[61]

Methodology
study

180–647,000 Pristine pellets purchased from manufacturer,
collection of urban waste

Manually cut or milled into smaller
particles

[62]

< 2 Polymer matrix synthesized in lab Photodegradation to produce
nanoparticles

[63]

200–3000 Pristine pellets purchased from manufacturer;
local household items collected

Grinding and size fractionation by metal
sieve or manual cutting

[64]

Manta trawl in seawater Filtration of seawater samples

100–5000 Pristine pellets and large plates purchased from
manufacturer

Manually cut into smaller particles [65]
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recent publications use dark-field hyperspectral micros-
copy (μHSI) to identify MP in organisms. Nigamatzya-
nova and Fakhrullin [67] identified MP with a diameter
of 100 nm in vivo in C. elegans. Nigamatzyanova and
Fakhrulin [66] note that separation of particles from the
matrix is not possible, as the aim is to visualize MP in
tissues or cells. The tissues of interest must be localized
in the FOV, and MP analyzed without prior extraction
or up-concentration. Identification of MP particles in
tissue was also demonstrated by Mattsson et al. [68]
who detected nanoplastics in the brain tissue of fish.
μHSI can clearly be successfully applied for nanoplastics
detection, however it cannot be used to analyze a wide
range of MP sizes [69].
Aside from μHSI, instruments used in other studies

are generally designed for analyzing larger objects.
Still, the next best spatial resolution is 14.8 μm [65].
The authors combined a Pika-640 hyperspectral
imager with an extension tube to improve the initial
spatial resolution by a factor of 17. This is competi-
tive with methods like μFT-IR (LOD = 10–20 μm,
[28]), but not Raman spectroscopy. Accordingly,
modification of instruments with stereomicroscopes
or phototubes may be a promising and simple way to
further improve their spatial resolution. Examples
from other fields also suggest that modifications to
existing hardware could improve spatial resolution.
Volent et al. [70] mounted a hyperspectral imager to
a stereomicroscope for taxonomic identification of
macroalgae. Only the visible region of the electromag-
netic spectrum was used in this case. When applying
this approach to the IR region, IR transparent mate-
rials would be required for optical components.

Overall, HSI instruments that are not coupled to mi-
croscopy have an average spatial resolution of 285 μm
which is comparable to ATR-FT-IR (Fig. 4). Compared
to ATR, the benefit of HSI is that all particles can be an-
alyzed simultaneously. This drastically reduces analysis
time and precludes the need to physically transfer parti-
cles. This in turn reduces the risk of damaging or losing
the particles. In addition, some particles are not well
suited to ATR since analysis requires good contact be-
tween the sample and a crystal for the measurement to
be carried out. Regardless of shape or surface structure,
MP > 285 μm are well identified by HSI. However, it is
important to remember that current HSI technologies
are designed to analyze objects much larger (waste sort-
ing) or much smaller (nm scale) than MP. Thus, a
hyperspectral imager with a “Goldilocks” spatial

Table 3 Technical specifications of benchtop HSI instrumentation used to analyze MP

Instrument (manufacturer) Wavelength
range (nm)

Spatial
resolution (μm)

Spectral
resolution (nm)

# polymers
identified

Reference

Hyspex SWIR 320 hyperspectral camera (Norsk Elektro Optikk) 968–2498 280 6a 11 [54]

13 [56]

SISU Chema XL (SISU Chema) 1000–2500 100 6.3 4 [59]

5.9a 3 [58]

Umbio Inspector (SISU Chema) 1000–2500 300 5 12 [55, 57]

V-NIR-A (Headwall Photonics) 400–1000 NR 2b 1 [60]

V-NIR (Headwall Photonics) 900–1700 NR 3b 5 [61]

G4–428 Hyperspec NIR R (Headwall Photonics) 900–1700 NR 3b 3 [64]

Pika NIR-640 (Resonon Inc.) 900–1700 14.8 2.5 11 [65]

Malvern InGaAs camera (Malvern Panalytical) 960–1662 300, 1000 5.9a 12 [55]

Videometer instrument (Videometer AS) 375–970 60 31.3a 12 [55]

Dark field CytoViva hyperspectral microscope (Cytoviva) 400–1000 0.128b 2 1 [63]

NIR Specim Imspector spectrometer mounted in front of an
InGaAs Sensor Unlimited camera

350–2000 25 10 9 [62]

aCalculated from spectral range and sampled wavelengths, b Details from manufacturer, NR not reported

Fig. 4 Limits of detection of optical analytical methods for MP. Purple
bars indicate ranges reported for various analytical methods in other
reviews focusing on MP analysis. Yellow dots indicate LODs as
reported by the authors of studies included in this review
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resolution for MP that covers a range of 10–500 μm re-
mains to be designed.

Spectral range and resolution
Spectral range and resolution are important parameters
to optimize as they yield the quantitative and qualitative
information needed to identify plastics. Accordingly, the
spectral range must include regions of the electromag-
netic spectrum where polymers show distinct absorb-
ance and reflectance patterns.
All but two studies used wavelengths of approximately

900 nm or longer, up to 2500 nm. (Table 3). The two
remaining studies focus on shorter wavelengths around
375–1000 nm [60, 63]. Based on the reviewed studies,
we identified specific regions of the IR spectrum that
contain distinct features useful for separating synthetic
polymers (Fig. 5). These regions are found predomin-
antly between 1000 and 1700 nm. This agrees with
Karlsson et al. [55] who concluded that the region be-
tween 375 and 970 nm was insufficient for polymer clas-
sification and, thus, recommend using wavelengths
above 1000 nm.
Resolution in the spectral domain varied considerably

(1–31 nm) and had an average of 6 nm (Table 3). The
coarsest resolution (31 nm) covered 19 wavelengths
which was deemed insufficient for polymer classification
[55]. Zhu et al. [65] use a resolution of 2.5 nm which re-
vealed more detailed spectral features as compared to 3
and 6 nm used by Shan et al. [64] and Serranti et al.
[58], respectively. Clearly, higher spectral resolution has
the advantage of providing more detailed information,
which facilitates polymer identification. However, this
also generates larger datafiles and requires more expen-
sive instrumentation. Thus, the spectral range and reso-
lution must be optimized to reduce computational and
instrumental costs. As seen above, the spectral region of
1000–1700 nm contains robust information for classifi-
cation of polymers and a spectral resolution of 6 nm

may be sufficient [58, 64]. It would be advantageous to
compare classification results including and excluding
the 1700–2500 nm range to assess the importance of
these wavelengths in polymer classification. If this region
does not add any critical information, it would be benefi-
cial to simplify data collection and analysis by excluding
it. However, spectral range and resolution need to be
adapted to the aims of the research.
If the objective is to differentiate between plastics and

other materials, a lower spectral resolution may be ac-
ceptable. In the context of remote sensing, instruments
which are mounted to air and spacecraft have limited
data storage and transfer capabilities. This challenge
could be overcome by sampling fewer wavelengths to re-
duce data dimensionality. As an example, Hibbitts et al.
[71] use dual wavelength imaging (i.e., only two wave-
lengths) at 1530 and 1720 nm to identify plastics in a re-
mote sensing context. They concluded that this was
insufficient to identify individual polymer types but ac-
ceptable for classifying plastics vs. non-plastics. Accord-
ingly, a higher spectral resolution will be needed if the
objective of a study is to differentiate polymer types with
relatively similar spectral signatures. An interesting con-
cept to explore would be the sampling of key band-
widths as opposed to sampling an entire range of
wavelengths, leading to a more multi-spectral as op-
posed to hyperspectral approach. This could further sim-
plify computational and instrumental requirements.

Analysis time and cost
The price of an HSI instrument depends on the type of
system. As an example, an IR-hyperspectral camera can
cost approximately 50 k USD (Resonon Pika-NIR-320),
while a benchtop system with an integrated moving
stage and software brings the price up to 70 k USD. In-
formation about the cost of HSI microscopy was un-
available, but such systems are certainly more costly.
Raman and FT-IR imaging, the gold standard in MP

Fig. 5 Spectral regions useful for identification of various polymers. Ranges indicated by colored bars were identified as containing useful spectral features for
the identification and differentiation of polymer spectra. This can include local minima and maxima. PVC: polyvinyl chloride, PS: polystyrene, PP: polypropylene,
PLA: polylactic acid, PET: polyethylene terephthalate, PE: polyethylene, PC: polycarbonate, ABS: acrylonitrile butadiene
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research, cost approximately 200-250 k USD, more than
twice as expensive as an HSI benchtop system [28].
Initial purchasing costs are an important aspect to

consider, but cost in terms of analysis time is equally as
important. Analysis time is dependent on the area of the
image. We will refer to area of the image as height x
width, meaning that height and width are both spatial
dimensions. Hyperspectral imagers which use the pushb-
room method have a fixed slit size. The slit size in com-
bination with the distance between imager and object
will determine the image height. This is maintained con-
stant as the image is being captured. The width of the
image is determined by the distance the imager or object
moves during a scan. That is to say that longer scans will
result in wider images (larger photomosaics). The length
(in time) of the scan (and thus width of the image) is
often adjustable by the operator.
For the studies covered here, the scan time ranged from

0.5–10min per sample. Shan et al. [60] used 30 s per image
(image area: 30 × 20mm). Karlsson et al. [55] reports three
different acquisition times for the respective instruments: <
1min (image area: 120 × 120mm) with a Videometer in-
strument, 1min (image height: 96mm, image length: un-
specified) with a Umbio Inspector and 5–10min (image
area: 49 × 55mm) using a Malvern instrument. Serranti
et al. [58] analyzed 738 particles in 17 images using SISU
ChemaXL, but analysis time was not reported. Based on
manufacturer’s specifications, we can assume that the scan-
ning rate was 40mm/s (image height: 2.8mm).
A drastic reduction in analysis time is a clear strength

of HSI. Particle recognition software reduces bias when
analyzing particles with Raman and FT-IR, but it does
not necessarily reduce analysis time as each particle
must still be analyzed individually. Conversely, analysis
time of imaging methods such as FPA-FTIR will be dir-
ectly dependent on the area, not the particle number.
While this is also true for HSI, analysis time is reported
in seconds or minutes as compared to hours for FPA-
FT-IR instruments. To illustrate this difference, we can
directly compare scan times. An HSI system can cover
240 mm2/second at a spatial resolution of 60 μm (Vide-
ometer instrument, [55]). 240 mm2 is approximately
equivalent to the surface area of one 47 mm diameter fil-
ter. Therefore, analyzing one filter takes only one second
with HSI. To complete the same task, an FPA-FT-IR in-
strument with a scanning speed of 4.9 mm2/hour
(5.5 μm spatial resolution) would take 49 h. Spatial reso-
lution is sacrificed for speed by using HSI. However,
modifications such as adding a phototube can improve
the spatial resolution [65] and thus render HSI competi-
tive to other imaging techniques. HSI could also be ad-
vantageous for researches with limited resources both
for the purchase of instrumentation and time spent on
analysis.

Data processing and quality control
Hyperspectral imagers produce large amounts of noisy
three-dimensional data. Data processing can be divided
into three processes: spectral pre-processing, pixel classi-
fication and image characterization for particle identifi-
cation. Spectral pre-processing is needed to reduce noise
and remove unimportant variation. Pixel classification,
usually by chemometric models, compresses and inter-
prets the data and is a central challenge for HSI [55, 56,
64]. The goal is to match the unknown spectra in the
hyperspectral datacube to known spectra from a refer-
ence material. By identifying pixels containing synthetic
polymer spectra, we can conclude which polymer type is
present and localize polymers in the image. Particle size,
morphology and number can then be assessed through
image characterization. This can be done visually based
on the model output (manual counting and
categorization) or could be substituted by automated
image analysis for particle counting.
Spectral preprocessing aims to reduce instrumental ar-

tefacts or differences which arise due to factors other
than the chemical composition of the sample. An ex-
ample of this is the amplitude of a spectrum: The abso-
lute spectral reflectance values could be very high for
white MPs, but low for dark blue MPs. The features of
the spectrum which allow for chemical identification are
the relationships between peaks, not the absolute spec-
tral reflectance values. Removing variations in amplitude
will allow models to focus on spectral characteristics
which are inherent to polymer type, and not necessarily
connected to other features like color. Preprocessing is
considered an important step but there is marked vari-
ation in the use of preprocessing both generally [72] and
among the studies in this review.
Preprocessing techniques used for HSI analysis of MP

include standard normal variate (SNV) [58, 59], 1st or 2nd
derivative [55, 57–59], multiple scatter correction (MSC)
[55], mean centering (MC) [58, 59], smoothing, and base-
line correction [54, 56]. Preprocessing can be broadly di-
vided into two categories: set-independent (i.e., one-way)
and set-dependent (i.e., two-way). Set-independent
methods process each spectrum independently, that is to
say based only on the features of each individual spectrum
[72]. Methods which fall into this category are SNV, MC,
derivatives, smoothing and baseline correction. Set-
dependent methods such as MSC use features averaged
over the set of spectra being analyzed. This yields different
results based on the group of included spectra.
Preprocessing is important for both training and test-

ing data. For analysis of unknown spectra, use of set-
dependent methods will give different results based on
each group of unknowns. For example, MSC will “mix”
the signals from polymer and non-polymer regions and
potentially remove important information. For this
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reason, set-independent preprocessing methods such as
smoothing and SNV are recommended [72]. MC is a
set-independent method, but not always necessary for
hyperspectral data. The goal of MC is to ensure that all
variables are within comparable ranges. As noted by Lee
et al. [72], this is typically not necessary for spectral
datasets as all variables are wavelengths and thus funda-
mentally comparable. We can conclude that SNV, 1st or
2nd derivatives or smoothing (or combinations thereof)
are suitable preprocessing methods for MP hyperspectral
data. Exactly which combination of methods is appropri-
ate will depend on the quality of the data. The reader is
referred to Lee et al. [72] for a more detailed discussion
of preprocessing methods.
Interestingly, Shan et al. [60] and Shan et al. [64] used

a PCA as a preprocessing method to reduce dimension-
ality of the data. The first 5 principal components were
extracted and used for classification. This would technic-
ally be a set-dependent preprocessing method but does
not “average out” details between groups as an MSC
would. However, PCA does not replace other prepro-
cessing methods whose aim is to reduce noise and extra-
neous variation. SNV, 1st or 2nd derivative and/or
smoothing could also be applied before the PCA. If di-
mensionality reduction is a high priority for the given
application, PCA can serve as an additional preprocess-
ing tool.
After pre-processing, spectra must be classified into

distinct categories. For MP research, these categories are
most often polymer type (e.g., polypropylene vs. poly-
ethylene). The goal with any classification approach is to
correctly classify pixels based on the spectra. This is typ-
ically done by analyzing known spectra (i.e., a test-set)
and comparing the results of the classification with the
identity of the samples. The ability of various techniques
or models to classify unknown spectra can be reported
using parameters such as precision (P), recall (R), sensi-
tivity and specificity. Precision indicates how many of
the positives (i.e., polymer spectra) are true positives,
while recall, also called sensitivity, is the fraction of true
positives which are correctly classified. Specificity is the
fraction of all negatives which are true negatives. These
parameters are reported as percentages and indicate how
many mistakes are made, classifying non-plastic pixels as
plastic or missing true plastic pixels. Reporting of P and
R values is a good way to compare quality across tech-
niques since both are independent of the analysis
method and chemometric model. The same values can
be reported for studies using other methods even if they
do not produce similar spectral and spatial data to HSI.
However, it bears mentioning that the sample size of the
test set is an important metric. If the test set is large and
diverse and the P and R values remain high (e.g., 95%),
this is an indication of a robust model. Testing with

smaller test sets could lead to erroneously high P and R
values. Sample sizes should be considered when making
inter-study or inter-method comparisons.
Analysis methods to classify spectra included a custom-

built spectral library matching algorithm, spectral angle
mapper (SAM), partial least squares discriminant analysis
(PLS-DA), Mahalanobis distance (MD), maximum likeli-
hood (ML), and support vector machine (SVM).
Spectral library matching used by Atwood et al. [54] is

based on the protocol developed by Schmidt et al. [56]
who created a spectral matching algorithm called Pla-
MAPP (Plastic Mapper). The algorithm is akin to spec-
tral library matching used by FT-IR and Raman
instruments and compares sample spectra to reference
spectra based on local minima after smoothing and base-
line correction. A matching penalty is calculated as the
distance between matched pairs of minima and further
divided by the squared percentage of matched absorp-
tion bands. The reference library contained 105 spectra
of 13 polymer types which constitute common plastics
expected in environmental samples. A matching penalty
for each pixel is calculated based on the comparison to
reference spectra, and each pixel is classified as a specific
polymer type based on threshold values.
The PlaMAPP algorithm worked reasonably well for

identifying MP. Of all the particles identified, 75% were
confirmed as true positives (P = 75.00) while 25% were
false positives. Misclassification of organic matter (e.g.,
biofouling, sedimentation, attachment) as plastic parti-
cles and noisy spectra approximating polymer spectra
were identified as the two main reasons for the high rate
of false positives. Underestimation of the number of MP
was also a problem as PlaMAPP could not discern adja-
cent particles of the same polymer type. In addition,
Schmidt et al. [56] discuss how large particles can reflect
light from their sides creating an “aura” resulting in an
overestimation of the size of the particle.
To avoid noise being classified as a polymer, Schmidt

et al. [56] imposed a two-pixel threshold that requires
two adjacent pixels to be of the same polymer to qualify
as MP. This minimized false positives but also reduced
the spatial resolution. The authors also corrected for
other false positives by visually inspecting particles
under a microscope which is not very robust as dis-
cussed above. Visual confirmation also adds manual
steps making the process both subjective and longer.
Also, they did not find a solution for the misclassifica-
tion of adjacent particles as one particle.
Spectral Angle Mapper (SAM) is another spectral

matching technique. It uses a reference vector and com-
pares each pixel vector to the reference. The angle be-
tween these vectors is calculated and used to assign
classes. The SAM classification model was used by Gal-
lagher et al. [63] and Zhu et al. [65]. P and R values were

Faltynkova et al. Microplastics and Nanoplastics            (2021) 1:13 Page 13 of 19



not reported. In the case of Gallagher et al. [63], only
one polymer was investigated. The exact polymer used
in the study could be imaged as a reference, making
spectral matching a by SAM a simple and effective
choice (see further discussion with PLS-DA).
Four studies used PLS-DA for classification of spectra:

Karlsson et al. [55], Schonlau et al. [57], Serranti et al.
[58] and Serranti and Fiore et al. [59]. PLS-DA is based
on principal components analysis which extracts latent
variables from a data matrix. In the case of PLS-DA, a
regression is performed on the latent variables to predict
the response variable (i.e., the polymer type). The goal is
to find latent variables relevant for the prediction of the
response variable, that is, spectral features which will
correctly classify polymers. PLS-DA requires training
data where the response variable is known. For MP ana-
lysis this means samples of known polymer type must be
imaged to acquire representative spectra for different
polymers. In all cases, HSI spectra of virgin polymers
were used to train the models.
Performance was reported in different ways. Karlsson

et al. [55] reported percent increase in particle detection
as compared with visual counts. Percent increase was on
average 65%, confirming that visual identification often
underestimates the presence of MP. However, some
negative percentages were also reported, showing that
HSI was also potentially vulnerable to underestimation.
Karlsson et al. [55] are critical of their own model, not-
ing a marked decrease in performance when classifying
weathered plastics as opposed to clean household items
which have not been exposed to harsh environmental
conditions. The authors hypothesize that using weath-
ered plastics as reference materials could improve per-
formance. It should also be noted that they identified up
to 12 different polymer types. Including so many classes
in a PLS-DA model makes classification very complex.
Serranti et al. [58] and Serranti and Fiore et al.

[59] take a contrasting approach using only 3 and 4
polymer types respectively. Average sensitivity and speci-
ficity values were 99.9 and 100% respectively, however,
the minimum particle sizes were 500 μm [58] and
1000 μm [59]. Large particles are easier to detect than
small particles, as their larger surface area covers a
greater number of pixels. In addition to using large MP,
using fewer classes simplifies classification significantly.
Under these conditions, it seems that PLS-DA outper-
forms spectral matching as described above.
Spectral matching uses fewer spectra which are repre-

sentative for each class. As little as one spectrum can be
used to define an entire class of, for example, polymers.
Considering that MP are a highly diverse group of poly-
mers, additives, and other chemicals, one single
spectrum may not be representative of all possible MP
spectra. PLS-DA models use large training sets which

can represent a wider variety of spectra. The class is
then defined according to the variation in the training
set. PLS-DA might therefore be inherently more robust
against within-class variance. However, spectral match-
ing encompasses a wide range of techniques and should
not be discounted. Techniques can be used in combin-
ation and tailored to the specific challenges of the appli-
cation. Shanmugam and Srinivasaperumal [73] provide a
comprehensive review of spectral matching techniques
which could prove useful for MP analysis.
In addition to PLS-DA, Support Vector Machine

(SVM) is a common supervised classification method.
SVM classifiers use hyperplanes to classify samples in
high dimensional space. The hyperplane is described by
an equation which maximizes the margins of the hyper-
plane to all classes. The nearest items constraining the
hyperplane are the so-called support vectors which de-
scribe decision boundaries. SVM classifiers were applied
in three studies [60, 61, 64], all of which employed ENVI
(Exelis Visual Information Solutions, Boulder, Colorado),
a software designed to handle and analyze hyperspectral
data. Regions of interest are selected in an RGB render-
ing of the hyperspectral datacube. Spectra from these re-
gions are then used as training data for classification of
unknown spectra. P and R values for SVM models varied
widely but mostly as a function of particle size. Gener-
ally, SVM performed better than the PlaMAPP model
with P values between 90% and 100% for particles >
250 μm. In a direct comparison Shan et al. [60] com-
pared different models and found that SVM outper-
formed MD and ML.
The ENVI software is attractive as it specializes in

handling hyperspectral data and provides tools for multi-
variate analysis. Other programs such as QGIS, SeaDAS
developed by NASA, and SNAP (European Space
Agency) offer similar solutions. These programs are
intended for remote sensing applications but are equally
useful for analyzing images from a benchtop instrument.
They have the benefit of handling hyperspectral data in
a user-friendly way. ENVI requires a paid license how-
ever the other programs mentioned are open source.
Open-source tools are also available on Github, but
some require more expertise to use. SIMCA (Sartorius
AG) is another software tool which offers easy-to-use
multivariate analysis, and has been recently applied to
HSI analysis of MP [74]. SIMCA analysis is similar to a
PLS-DA but creates independent models for each class.
This reduces complexity and improves performance
when there are multiple classes and high within-class
variation [75]. SIMCA could therefore perform better if
more polymer types are included as well as weathered
plastics for training data.
Other approaches have been proposed but only ap-

plied theoretically. Convolutional neural networks have
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shown promising results for classification of hyperspec-
tral images. Chaczko et al. [76] manipulated an existing
collection of hyperspectral images of textiles to mimic
MP. A neutral network was applied to classify the fabri-
cated MP spectra. Further exploration of classification
methods could lead to improved detection of MP. Com-
bining spectral and spatial data is another possibility
[77]. Spatial data could help compensate for degraded
spectra of weathered particles or weak spectral reflect-
ance of small particles.
Two main challenges highlighted in multiple studies

were the detection of small particles and the classifica-
tion of dark particles. Particles > 300 μm were reliably
detected by Shan et al. [64]. For class sizes below
300 μm, P and R values were consistently lower (Fig. 6).
Zhang et al. [61] reported an average precision and recall
of 68.5% and 74.5%, respectively, for particles as small as
100 μm. This was dependent on the polymer type, with
PS and PE having the best classification results. This is
presumably because some polymers have more distinct
spectral characteristics (optical fingerprints) than others,
making them easier to identify. Zhu et al. [65] also re-
ported that 100 μm particles could be reliably character-
ized. The decrease of model performance for smaller
particles indicates that the spatial resolution of the cam-
era begins to limit the classification ability of the model.
When a particle is smaller than the area covered by one
pixel, the resulting spectrum will be a combination of
spectral reflectance from the particle and other materials
in the pixel area.
Analyzing dark particles is another challenge [60, 65].

Precision decreased for black compared to white PE

particles, indicating that there were more false positives
[60]. Zhu et al. [65] describes poor identification of grey,
black and brown particles owing to a lower reflectance
that results in ambiguous or noisy spectra. This implies
that spectral data will be less sufficient for classification
as spectral reflectance of particles decreases.
The approach to data analysis will be highly dependent

on the experience of the analyst as well as the tools
available to them (i.e. open source vs. licensed software).
Models like PLS-DA and SVM can be executed in open
source software and are relatively easy to learn for
people with knowledge in other statistical analyses. All
analyses are however dependent on a representative and
comprehensive database of spectra from a variety of
plastics: both weathered, biofouled and pristine, a variety
of polymers, sizes shapes and colors (dark vs. light). A
shared database of spectra could contribute to facilitat-
ing analysis, reducing the number of steps needed for
any individual research group. More publications are
emerging providing hyperspectral datasets for plastics
[78, 79], but access could be improved by including HSI
data on established sharing platforms such as Open-
Specy [80]. More information on performance compar-
ing different strategies, as well as a well-developed
protocol for implementation would also be beneficial for
researchers in biology, chemistry, and ecotoxicology.
Existing methods could also benefit from the same

evaluation of the methods discussed here. FPA-FT-IR
uses similar classification models and could thus easily
report similar quality parameters when analyzing stand-
ard samples. While some chemometric analysis has been
performed, data are often exploratory in nature and do
not provide similar parameters on model quality [81,
82]. The introduction of more standardized practices
from chemometrics could improve quality assurance and
quality control of both HSI and other spectroscopic
methods.

Challenges and Recommendations
The HSI systems covered in this review were unable to
detect MP smaller than 100 μm. This is not unexpected
considering that most hyperspectral cameras are
intended for larger objects. To make HSI competitive
with other methods, the spatial resolution must be im-
proved. Modifying existing instruments with optical ele-
ments (e.g. stereomicroscopes) may provide a simple
way to increase spatial resolution. Development of HSI
cameras for MP analysis would allow customization
based on the needs of MP analysis.
Spectral resolution on the other hand can likely be de-

creased without sacrificing performance, for instance by
targeting wavelengths that are specific for synthetic poly-
mers. Reducing spectral information will reduce compu-
tational demands and make analysis simpler. Various

Fig. 6 Precision, recall, sensitivity, and specificity of chemometric
models used to identify MP. The x axis indicates the smallest particle
size analyzed for each model. Precision, recall, sensitivity, and
specificity are reported as percentages where 100% would indicate
that the model made no classification errors for that parameter
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examples from the remote sensing community show that
plastic identification is possible using a multi spectral
approach [37, 71]. Exactly how coarse the spectral reso-
lution can be while still differentiating polymers is a
question for future research.
Another concept we can adopt from remote sensing is

the use of weathered plastics for creating reference spec-
tra. Plastics sampled from the marine environment will
have undergone varying degrees of weathering causing
decreases in spectral amplitude and degradation of spec-
tral features [83]. Furthermore, plastics found in nature
come from a wide variety of sources and contain a diver-
sity of additive chemicals. Biermann et al. [37] identified
plastics floating on the ocean surface in satellite images
from the Sentinal-2 multispectral instrument. A “floating
debris index” was created using the known plastics as
references. This reflectance index was used for identify-
ing floating plastics in new images. Future research
should compare the use of virgin and weathered plastics
to see if more realistic training data can increase model
performance.
Another opportunity for improvement would be the

inclusion of spatial information such as the morpho-
logical features of MP to identify particles. None of the
current models incorporate any spatial data for particle
classification. While estimates of particle number, shape
and size can be made from supervised analysis of hyper-
spectral images, this information is calculated after clas-
sification in a pixel-wise fashion based solely on spectral
data. Particle recognition algorithms which use RGB im-
ages are already in use in FT-IR and Raman spectros-
copy. Combining particle recognition with spectral data
could result in a model which is more robust against de-
graded spectral features, either due to low spectral re-
flectance or heavy weathering of particles. As discussed,
convolutional neural networks may be a candidate for
combining spectral and spatial data.
Most studies included in this review reported quality

control parameters which are largely absent in the current
literature on MP identification and characterization. The
use of models like SVM and PLS-DA requires a test data-
set to evaluate the model’s performance. Reporting per-
formance parameters such as precision and recall through
standardized testing provides important insight into how
accurately MP are identified and characterized. It also
serves as a basis for comparison between methods. FPA-
FT-IR produces similar data to HSI (i.e., infrared spectra
mapped over an area) and thus requires similar data hand-
ling techniques. The reporting of precision and recall for
FPA-FT-IR and other MP methods could be done using
spiked samples with known MP content, or by processing
spectra from known MP. Including this information
would allow even dissimilar analysis techniques to be
compared.

Despite methodological differences, there were some
common conclusions which appeared in multiple
sources (Table 4). These general trends help to indicate
best practices which can be adopted by other research
groups intending to apply HSI to MP analysis. Some of
the common threads relate to challenges while others
provide key insights or solutions to the methodology.

Conclusion
The studies assessed in this review indicate that HSI can
positively identify MP consisting of various polymer
types and size. Some exploration of color differences,
background materials and spectral classification has pro-
vided a good framework for application of HSI to MP.
Adjusting training data and spectral/spatial resolution
could improve accuracy of classification models. Using
more consistent terminology for reporting performance
would facilitate comparisons between studies and
methods and contribute to a better understanding of
strengths and weaknesses of HSI. The main advantage of
HSI over other methods is reduction in analysis time
and objective analysis, (i.e., towards a more automated
approach). Data analysis tools are still under develop-
ment and not readily available to all researchers. With
the development models made available on open source
platforms, HSI could become a promising technique for
further MP analysis.
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Table 4 Overview of common conclusions in the literature
review

Conclusions Source

Water reduces spectral reflectance, drying of particles is
important

[61, 64]

SVM model outperforms PLS-DA, ML [60, 64]

Dark particles are harder to detect [60, 65]

ID of smaller particles is hindered by spatial resolution [56, 60, 61,
64]

Weathered polymers have degraded spectra as compared
with pristine polymers

[55, 62]

Reference polymers should be more diverse, include
weathering and polymer mixtures

[65]

Over 90% of particles > 1 mm positively identified [58, 60]

Addition of extra “class” for background or non-polymer
material helped classification

[56, 59, 60]

Glass fiber filter is a suitable background material [54–57, 64,
65]
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